Abstract
We report the latest results of turbulence and transport studies in the ASDEX Upgrade scrape-off layer (SOL). Dissimilarity between the plasma and the floating potential fluctuations is studied experimentally and by gyrofluid simulations. Measurements by a retarding field analyser reveal that both, edge-localized mode (ELM) and turbulent filaments, convey hot ions over large radial distances in the SOL. The measured far SOL ELM ion temperature increases with the ELM energy, consistent with earlier observations that large ELMs deposit a large fraction of their energy outside the divertor. In the SOL, the ELM suppression by magnetic perturbations (MPs) results in lower ELM ion energy in the far SOL. At the same time, large filaments of ion saturation current are replaced by more continuous bursts. Splitting of the divertor strike zones observed by the infrared imaging in H-mode with MPs agree with predictions from the EMC3-Eirene simulations. This suggests that the 'lobe' structures due to perturbation fields observed near the X-point are not significantly affected by plasma screening, and can be described by a vacuum approach, as in the EMC3-Eirene. Finally, some effects of the MPs on the L-mode SOL are addressed.
Original language | English |
---|---|
Article number | 073047 |
Journal | Nuclear Fusion |
Volume | 53 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2013 |
Externally published | Yes |