Intermediate Bands in Zero-Dimensional Antimony Halide Perovskites

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Using density functional theory, the structural and electronic-structure properties of a recently discovered, zero-dimensional antimony halide perovskite are studied. It is found that the herein considered material EtPySbBr6 exhibits very promising electronic-structure properties: a direct band gap close to the peak of the solar spectrum and effective masses allowing for efficient carrier transport of electrons in particular. These results are rationalized by analysis of the electronic structure, which reveals the formation of intermediate bands due to orbital-hybridization effects of the Sb s-states. This study shows that the formation of intermediate bands can lead to highly favorable electronic-structure properties of zero-dimensional perovskites and discusses the possibility of fabricating lead-free halide perovskites with promising optoelectronic properties by targeted substitution of ions and emergence of intermediate bands. These insights are important when understanding and further enhancing the capabilities of antimony and other promising lead-free compounds.

Original languageEnglish
Pages (from-to)4652-4656
Number of pages5
JournalJournal of Physical Chemistry Letters
Issue number16
StatePublished - 16 Aug 2018
Externally publishedYes


Dive into the research topics of 'Intermediate Bands in Zero-Dimensional Antimony Halide Perovskites'. Together they form a unique fingerprint.

Cite this