Interleukin-10 Blocked Endoplasmic Reticulum Stress in Intestinal Epithelial Cells: Impact on Chronic Inflammation

Anna Shkoda, Pedro A. Ruiz, Hannelore Daniel, Sandra C. Kim, Gerhard Rogler, R. Balfour Sartor, Dirk Haller

Research output: Contribution to journalArticlepeer-review

240 Scopus citations

Abstract

Background & Aims: The initiation of endoplasmic reticulum (ER)-mediated stress responses in intestinal epithelial cells (IEC) may contribute to the pathogenesis of chronic intestinal inflammation. The aim of the study was to use functional epithelial cell proteomics to characterize anti-inflammatory mechanisms of interleukin 10 (IL-10). Methods: Primary IEC were isolated from Enterococcus faecalis-monoassociated IL-10-deficient (IL-10-/-) and wild-type mice to perform 2D-gel sodium-dodecyl-sulfate polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. In addition, IEC from 6 patients with active Crohn's disease, ulcerative colitis, and sigmoid diverticulitis as well as noninflamed controls were purified. Molecular protective mechanisms of IL-10 were characterized in tumor necrosis factor (TNF)-stimulated IL-10 receptor (IL-10R) reconstituted epithelial cells. Results: Primary IEC from IL-10-/- mice as well as inflammatory bowel disease patients revealed increased expression levels of the glucose-regulated ER stress protein (grp)-78 under conditions of chronic inflammation. Consistent with the observation that TNF induced ER stress responses through grp-78 redistribution from the ER lumen to the cytoplasmic IκB kinase complex, grp-78 knockdown completely abolished TNF-induced nuclear factor-κB RelA phosphorylation in epithelial cell cultures. Interestingly, IL-10 inhibited grp-78 protein and messenger RNA expression in IL-10R reconstituted IEC. Chromatin immunoprecipitation analysis and immunofluorescence microscopy revealed that IL-10-mediated p38 signaling inhibited TNF-induced recruitment of the ER-derived activating transcription factor (ATF)-6 to the grp-78 promoter likely through the blockade of ATF-6 nuclear translocation. Conclusions: Primary IEC from inflamed IL-10-/- mice and inflammatory bowel disease patients revealed activated ER stress responses in the intestinal epithelium. IL-10 inhibits inflammation-induced ER stress response mechanisms by modulating ATF-6 nuclear recruitment to the grp-78 gene promoter.

Original languageEnglish
Pages (from-to)190-207
Number of pages18
JournalGastroenterology
Volume132
Issue number1
DOIs
StatePublished - Jan 2007

Fingerprint

Dive into the research topics of 'Interleukin-10 Blocked Endoplasmic Reticulum Stress in Intestinal Epithelial Cells: Impact on Chronic Inflammation'. Together they form a unique fingerprint.

Cite this