Abstract
All-solid-state Li-ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li-garnet, c-Li6.25Al0.25La3Zr2O12, all-solid-state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface-engineered all-solid-state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all-solid-state Li-ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all-solid-state Li-ion batteries based on garnet-type cubic LLZO structures.
Original language | English |
---|---|
Article number | 1600736 |
Journal | Advanced Energy Materials |
Volume | 6 |
Issue number | 19 |
DOIs | |
State | Published - 12 Oct 2016 |
Externally published | Yes |
Keywords
- Al-doped LiLaZrO
- Li-ion batteries
- LiTiO
- anode
- garnet
- ionic conductivity
- solid electrolyte