Interactions of selected organic molecules with a blue phosphorene monolayer: Self-assembly, solvent effect, enhanced binding and fixation through coadsorbed gold clusters

T. Gorkan, Y. Kadioglu, E. Aktürk, S. Ciraci

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In this paper we investigate the interaction between a pristine blue phosphorene monolayer and selected organic molecules like amino acids and nucleic acid bases. These molecules are bound to the substrate by a weak van der Waals interaction leading to their physisorption. When isolated, they tend to orient themselves parallel to the surface and are located in flat minima with very low libration frequencies; thus the electronic structures of the substrate and physisorbed molecules are not affected except for relative shifts. Even though the regular self-assembly of these molecules on the pristine blue phosphorene cannot be realized under this weak interaction, only their irregular coating of the substrate can occur due to increased intermolecular coupling. In a solvent like water, the weak binding energy is further decreased. Gold adatoms and gold clusters can form strong chemical bonds with pristine blue phosphorene and modify its electronic and magnetic state depending on the coverage. While full coverage of a blue phosphorene monolayer by gold adatoms leads to instabilities followed by clustering, relatively lower coverage can attribute very interesting magnetic and electronic states, like a spin gapless semiconductor. When bound to the gold clusters already adsorbed on the blue phosphorene monolayer, amino acid and nucleic acid base molecules form relatively strong chemical bonds and hence can be fixed to the surface; they are reoriented to gain self-assembly character and the whole system acquires new functionalities.

Original languageEnglish
Pages (from-to)26552-26561
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume22
Issue number45
DOIs
StatePublished - 7 Dec 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Interactions of selected organic molecules with a blue phosphorene monolayer: Self-assembly, solvent effect, enhanced binding and fixation through coadsorbed gold clusters'. Together they form a unique fingerprint.

Cite this