Interaction-aware occupancy prediction of road vehicles

Markus Koschi, Matthias Althoff

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

15 Scopus citations

Abstract

A crucial capability of autonomous road vehicles is the ability to cope with the unknown future behavior of surrounding traffic participants. This requires using non-deterministic models for prediction. While stochastic models are useful for long-term planning, we use set-valued non-determinism capturing all possible behaviors in order to verify the safety of planned maneuvers. To reduce the set of solutions, our earlier work considers traffic rules; however, it neglects mutual influences between traffic participants. This work presents the first solution for establishing interaction within set-based prediction of traffic participants. Instead of explicitly modeling dependencies between vehicles, we trim reachable occupancy regions to consider interaction, which is computationally much more efficient. The usefulness of our approach is demonstrated by experiments from the CommonRoad benchmark repository.

Original languageEnglish
Title of host publication2017 IEEE 20th International Conference on Intelligent Transportation Systems, ITSC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-8
Number of pages8
ISBN (Electronic)9781538615256
DOIs
StatePublished - 2 Jul 2017
Event20th IEEE International Conference on Intelligent Transportation Systems, ITSC 2017 - Yokohama, Kanagawa, Japan
Duration: 16 Oct 201719 Oct 2017

Publication series

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Volume2018-March

Conference

Conference20th IEEE International Conference on Intelligent Transportation Systems, ITSC 2017
Country/TerritoryJapan
CityYokohama, Kanagawa
Period16/10/1719/10/17

Fingerprint

Dive into the research topics of 'Interaction-aware occupancy prediction of road vehicles'. Together they form a unique fingerprint.

Cite this