Abstract
Aims: Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation. Methods: Soil CO2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration). Results: Total soil CO2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha−1 yr.−1). The undisturbed forest served as atmospheric C sink (2.1 t C ha−1 yr.−1), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (−5.5 t C ha−1 yr.−1) was almost twice as high as six years after disturbance (−2.9 t C ha−1 yr.−1), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss. Conclusions: C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.
Original language | English |
---|---|
Pages (from-to) | 239-252 |
Number of pages | 14 |
Journal | Plant and Soil |
Volume | 420 |
Issue number | 1-2 |
DOIs | |
State | Published - 1 Nov 2017 |
Externally published | Yes |
Keywords
- Clear-cut
- Disturbance
- Fine roots
- Forest C cycling
- Ground vegetation
- Soil CO efflux