TY - JOUR
T1 - Injection 3D concrete printing (I3DCP)
T2 - Basic principles and case studies
AU - Hack, Norman
AU - Dressler, Inka
AU - Brohmann, Leon
AU - Gantner, Stefan
AU - Lowke, Dirk
AU - Kloft, Harald
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Today, the majority of research in 3D concrete printing focuses on one of the three methods: firstly, material extrusion; secondly, particle-bed binding; and thirdly, material jetting. Common to all these technologies is that the material is applied in horizontal layers. In this paper, a novel 3D concrete printing technology is presented which challenges this principle: the so-called Injection 3D Concrete Printing (I3DCP) technology is based on the concept that a fluid material (M1) is robotically injected into a material (M2) with specific rheological properties, causing material M1 to maintain a stable position within material M2. Different to the layered deposition of horizontal strands, intricate concrete structures can be created through printing spatially free trajectories, that are unconstrained by gravitational forces during printing. In this paper, three versions of this method were investigated, described, and evaluated for their potential in construction: A) injecting a fine grain concrete into a non-hardening suspension; B) injecting a non-hardening suspension into a fine grain concrete; and C) injecting a fine grain concrete with specific properties into a fine grain concrete with different properties. In an interdisciplinary research approach, various material combinations were developed and validated through physical experiments. For each of the three versions, first architectural applications were developed and functional prototypes were fabricated. These initial results confirmed both the technological and economic feasibility of the I3DCP process, and demonstrate the potential to further expand the scope of this novel technology.
AB - Today, the majority of research in 3D concrete printing focuses on one of the three methods: firstly, material extrusion; secondly, particle-bed binding; and thirdly, material jetting. Common to all these technologies is that the material is applied in horizontal layers. In this paper, a novel 3D concrete printing technology is presented which challenges this principle: the so-called Injection 3D Concrete Printing (I3DCP) technology is based on the concept that a fluid material (M1) is robotically injected into a material (M2) with specific rheological properties, causing material M1 to maintain a stable position within material M2. Different to the layered deposition of horizontal strands, intricate concrete structures can be created through printing spatially free trajectories, that are unconstrained by gravitational forces during printing. In this paper, three versions of this method were investigated, described, and evaluated for their potential in construction: A) injecting a fine grain concrete into a non-hardening suspension; B) injecting a non-hardening suspension into a fine grain concrete; and C) injecting a fine grain concrete with specific properties into a fine grain concrete with different properties. In an interdisciplinary research approach, various material combinations were developed and validated through physical experiments. For each of the three versions, first architectural applications were developed and functional prototypes were fabricated. These initial results confirmed both the technological and economic feasibility of the I3DCP process, and demonstrate the potential to further expand the scope of this novel technology.
KW - Concrete 3D printing
KW - Digital concrete
KW - Injection 3D concrete printing
UR - http://www.scopus.com/inward/record.url?scp=85081686106&partnerID=8YFLogxK
U2 - 10.3390/ma13051093
DO - 10.3390/ma13051093
M3 - Article
AN - SCOPUS:85081686106
SN - 1996-1944
VL - 13
JO - Materials
JF - Materials
IS - 5
M1 - 1093
ER -