TY - JOUR
T1 - Initial soil aggregate formation and stabilisation in soils developed from calcareous loess
AU - Pihlap, Evelin
AU - Steffens, Markus
AU - Kögel-Knabner, Ingrid
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - In soil, carbonates are important inorganic binding agents, controlling aggregate formation and soil structural stability. Until today, a clear understanding of the aggregate forming mechanisms in calcareous soil is missing. The objective of this study was to elucidate the initial aggregate formation in calcareous loess from the point when soil organic matter content was low and soil properties were mostly controlled by the parent material. We used a space-for-time chronosequence approach on agriculturally reclaimed loess soils in an open-cast lignite mining area in Garzweiler, Germany. We selected six time points from 0 to 24 years after reclamation in order to investigate the early processes of soil aggregate formation. Samples from two sampling depths (1–5 cm and 16–20 cm) were wet sieved into four size classes: silt- and clay-sized fraction (<63 µm), large microaggregates (63–200 µm), small macroaggregates (200–630 µm), and large macroaggregates (>630 µm). Each aggregate size class was characterized for soil organic carbon, total nitrogen and CaCO3 content. Organic matter amendment induced the formation of large macroaggregates (>630 µm), but we did not detect an accumulation of soil organic carbon neither in microaggregates nor in the silt- and clay-sized fraction. The silt- and clay-sized fraction contained large amounts of CaCO3 throughout the whole space-for-time chronosequence. This finding shows that in undeveloped loess material, microaggregation is controlled by cementation by carbonates inherited from the loess. These carbonates were likely easily dissolved during contact with water, therefore, aggregates in the early stage of soil development were not water-stable. Soil aggregate formation on young calcareous soils consists of two main mechanisms, 1. fresh soil organic matter predominantly contributes to macroaggregate formation, and 2. intrinsic cementing of loess through carbonates affects microaggregate stability. Therefore, the early stages of soil development in loess material do not show an aggregate hierarchy as we would expect in soils with high silt and clay content, such as Cambisols and Luvisols.
AB - In soil, carbonates are important inorganic binding agents, controlling aggregate formation and soil structural stability. Until today, a clear understanding of the aggregate forming mechanisms in calcareous soil is missing. The objective of this study was to elucidate the initial aggregate formation in calcareous loess from the point when soil organic matter content was low and soil properties were mostly controlled by the parent material. We used a space-for-time chronosequence approach on agriculturally reclaimed loess soils in an open-cast lignite mining area in Garzweiler, Germany. We selected six time points from 0 to 24 years after reclamation in order to investigate the early processes of soil aggregate formation. Samples from two sampling depths (1–5 cm and 16–20 cm) were wet sieved into four size classes: silt- and clay-sized fraction (<63 µm), large microaggregates (63–200 µm), small macroaggregates (200–630 µm), and large macroaggregates (>630 µm). Each aggregate size class was characterized for soil organic carbon, total nitrogen and CaCO3 content. Organic matter amendment induced the formation of large macroaggregates (>630 µm), but we did not detect an accumulation of soil organic carbon neither in microaggregates nor in the silt- and clay-sized fraction. The silt- and clay-sized fraction contained large amounts of CaCO3 throughout the whole space-for-time chronosequence. This finding shows that in undeveloped loess material, microaggregation is controlled by cementation by carbonates inherited from the loess. These carbonates were likely easily dissolved during contact with water, therefore, aggregates in the early stage of soil development were not water-stable. Soil aggregate formation on young calcareous soils consists of two main mechanisms, 1. fresh soil organic matter predominantly contributes to macroaggregate formation, and 2. intrinsic cementing of loess through carbonates affects microaggregate stability. Therefore, the early stages of soil development in loess material do not show an aggregate hierarchy as we would expect in soils with high silt and clay content, such as Cambisols and Luvisols.
KW - Aggregate size distribution
KW - Aggregate stability
KW - Carbonates
KW - Reclamation
KW - Soil organic carbon allocation
UR - http://www.scopus.com/inward/record.url?scp=85098484477&partnerID=8YFLogxK
U2 - 10.1016/j.geoderma.2020.114854
DO - 10.1016/j.geoderma.2020.114854
M3 - Article
AN - SCOPUS:85098484477
SN - 0016-7061
VL - 385
JO - Geoderma
JF - Geoderma
M1 - 114854
ER -