Information-driven direct RGB-D odometry

Alejandro Fontan, Javier Civera, Rudolph Triebel

Research output: Contribution to journalConference articlepeer-review

24 Scopus citations

Abstract

This paper presents an information-theoretic approach to point selection in direct RGB-D odometry. The aim is to select only the most informative measurements, in order to reduce the optimization problem with a minimal impact in the accuracy. It is usual practice in visual odometry/SLAM to track several hundreds of points, achieving real-time performance in high-end desktop PCs. Reducing their computational footprint will facilitate the implementation of odometry and SLAM in low-end platforms such as small robots and AR/VR glasses. Our experimental results show that our novel information-based selection criterion allows us to reduce the number of tracked points an order of magnitude (down to only 24 of them), achieving an accuracy similar to the state of the art (sometimes outperforming it) while reducing 10 times the computational demand.

Original languageEnglish
Article number9157148
Pages (from-to)4928-4936
Number of pages9
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
StatePublished - 2020
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
Duration: 14 Jun 202019 Jun 2020

Fingerprint

Dive into the research topics of 'Information-driven direct RGB-D odometry'. Together they form a unique fingerprint.

Cite this