Influence of argon, helium, and their mixtures on the powder bed fusion of an Al–Cu–Li–Ti alloy using a laser beam: Evaporation, microstructure, and mechanical properties

Siegfried Baehr, Graham Matheson, Thomas Ammann, Peter Mayr, Michael F. Zaeh

Research output: Contribution to journalArticlepeer-review

Abstract

The role of the inert processing gas during the powder bed fusion of metals using a laser beam (PBF-LB/M) is to prevent oxidation and remove process by-products, such as metal vapor and spatter particles. The present study aims to unveil additional impacts of using argon (Ar), helium (He), and two mixtures thereof as the processing gas on the material properties of a high-strength Al–Cu–Li–Ti alloy fabricated by PBF-LB/M. The part density, microstructure, static tensile properties, and volatile element evaporation were characterized as functions of the processing gas. Decreased porosity levels and increased melt penetration depths were found across a range of processing parameters when increasing the fraction of He in Ar indicating a more stable process and melt pool dynamics. A trend towards increasing yield and ultimate tensile strength was also observed and was attributed to a slightly refined grain size when processing under He-containing gases. The process gas had no significant influence on the evaporation of alloying constituents in the material. Overall, several advantages of using He-containing process gases over pure Ar in PBF-LB/M are demonstrated and discussed.

Original languageEnglish
Article number100142
JournalAdvances in Industrial and Manufacturing Engineering
Volume8
DOIs
StatePublished - May 2024

Keywords

  • Additive manufacturing
  • Aluminum
  • Mechanical properties
  • PBF-LB/M
  • Process gas

Fingerprint

Dive into the research topics of 'Influence of argon, helium, and their mixtures on the powder bed fusion of an Al–Cu–Li–Ti alloy using a laser beam: Evaporation, microstructure, and mechanical properties'. Together they form a unique fingerprint.

Cite this