Inferring super-resolution depth from a moving light-source enhanced RGB-D Sensor: A variational approach

Lu Sang, Bjoern Haefner, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

A novel approach towards depth map super-resolution using multi-view uncalibrated photometric stereo is presented. Practically, an LED light source is attached to a commodity RGB-D sensor and is used to capture objects from multiple viewpoints with unknown motion. This non-static camera-to-object setup is described with a nonconvex variational approach such that no calibration on lighting or camera motion is required due to the formulation of an end-to-end joint optimization problem. Solving the proposed variational model results in high resolution depth, reflectance and camera pose estimates, as we show on challenging synthetic and real-world datasets.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-10
Number of pages10
ISBN (Electronic)9781728165530
DOIs
StatePublished - Mar 2020
Event2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020 - Snowmass Village, United States
Duration: 1 Mar 20205 Mar 2020

Publication series

NameProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

Conference

Conference2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020
Country/TerritoryUnited States
CitySnowmass Village
Period1/03/205/03/20

Fingerprint

Dive into the research topics of 'Inferring super-resolution depth from a moving light-source enhanced RGB-D Sensor: A variational approach'. Together they form a unique fingerprint.

Cite this