Indexing moiré patterns of metal-supported graphene and related systems: Strategies and pitfalls

Patrick Zeller, Xinzhou Ma, Sebastian Günther

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Wereport on strategies forcharacterizing hexagonal coincidence phases by analyzing the involved spatial moiré beating frequencies of the pattern.Wederive general properties of the moiré regarding its symmetry and construct the spatial beating frequency K→moiré as the difference between two reciprocal lattice vectors k→i of the two coinciding lattices. Considering reciprocal lattice vectors kK→i , with lengths of up to ntimes the respective (1, 0) beams of the two lattices, readily increases the number of beating frequencies of the nth-order moiré pattern.Wepredict how many beating frequencies occur in nth-order moirés and show that for one hexagonal lattice rotating above another the involved beating frequencies follow circular trajectories in reciprocal-space. The radius and lateral displacement of such circles are defined by the order n and the ratio x of the two lattice constants. The question of whether the moiré pattern is commensurate or not is addressed by using our derived concept of commensurability plots. When searching potential commensurate phases we introduce a method, which we call cell augmentation, and which avoids the need to consider high-order beating frequencies as discussed using the reported (6 3 6 3 )R30moiré of graphene on SiC(0001).We also show how to apply our model for the characterization of hexagonal moiré phases, found for transition metal-supported graphene and related systems.Weexplicitly treat surface x-ray diffraction, scanning tunneling microscopy- and low-energy electron diffraction data to extract the unit cell of commensurate phases or to find evidence for incommensurability. For each data type, analysis strategies are outlined and avoidable pitfalls are discussed.Wealso point out the close relation of spatial beating frequencies in a moiré and multiple scattering in electron diffraction data and show how this fact can be explicitly used to extract high-precision data.

Original languageEnglish
Article number013015
JournalNew Journal of Physics
Volume19
Issue number1
DOIs
StatePublished - Jan 2017
Externally publishedYes

Keywords

  • 2-dimensional hexagonal systems
  • grapheme
  • low-energy electron diffraction
  • moiré
  • scanning tunneling microscopy
  • x-ray diffraction

Fingerprint

Dive into the research topics of 'Indexing moiré patterns of metal-supported graphene and related systems: Strategies and pitfalls'. Together they form a unique fingerprint.

Cite this