Incremental Skill Learning of Stable Dynamical Systems

Matteo Saveriano, Dongheui Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

Efficient skill acquisition, representation, and online adaptation to different scenarios has become of fundamental importance for assistive robotic applications. In the past decade, dynamical systems (DS) have arisen as a flexible and robust tool to represent learned skills and to generate motion trajectories. This work presents a novel approach to incrementally modify the dynamics of a generic autonomous DS when new demonstrations of a task are provided. A control input is learned from demonstrations to modify the trajectory of the system while preserving the stability properties of the reshaped DS. Learning is performed incrementally through Gaussian process regression, increasing the robot's knowledge of the skill every time a new demonstration is provided. The effectiveness of the proposed approach is demonstrated with experiments on a publicly available dataset of complex motions.

Original languageEnglish
Title of host publication2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6574-6581
Number of pages8
ISBN (Electronic)9781538680940
DOIs
StatePublished - 27 Dec 2018
Externally publishedYes
Event2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 - Madrid, Spain
Duration: 1 Oct 20185 Oct 2018

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Country/TerritorySpain
CityMadrid
Period1/10/185/10/18

Fingerprint

Dive into the research topics of 'Incremental Skill Learning of Stable Dynamical Systems'. Together they form a unique fingerprint.

Cite this