Incremental Semi-Supervised Learning from Streams for Object Classification

Ioannis Chiotellis, Franziska Zimmermann, Daniel Cremers, Rudolph Triebel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

The Label Propagation (LP) algorithm, first introduced by Zhu and Ghahramani [1], is a semi-supervised method used in transductive learning scenarios, where all data are available already in the beginning. In this work, we present a novel extension of the LP algorithm for applications where data samples are observed sequentially - as is the case in autonomous driving. Specifically, our 'Incremental Label Propagation' algorithm efficiently approximates the so called harmonic solution on a nearest-neighbor graph that is regularly updated by new labeled and unlabeled nodes. We achieve this by reformulating the original algorithm based on an active set of nodes and by introducing a threshold to decide whether the label of a given node should be updated or not. Our method can also deal with graphs that are not fully connected, and we give a formal convergence proof for this general case. In experiments on the challenging KITTI benchmark data stream, we show superior performance in terms of both test accuracy and number of required training labels compared to state-of-the-art online learning methods.

Original languageEnglish
Title of host publication2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5743-5749
Number of pages7
ISBN (Electronic)9781538680940
DOIs
StatePublished - 27 Dec 2018
Event2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 - Madrid, Spain
Duration: 1 Oct 20185 Oct 2018

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Country/TerritorySpain
CityMadrid
Period1/10/185/10/18

Fingerprint

Dive into the research topics of 'Incremental Semi-Supervised Learning from Streams for Object Classification'. Together they form a unique fingerprint.

Cite this