TY - JOUR
T1 - In vivo dark-field radiography for early diagnosis and staging of pulmonary emphysema
AU - Hellbach, Katharina
AU - Yaroshenko, Andre
AU - Meinel, Felix G.
AU - Yildirim, Ali O.
AU - Conlon, Thomas M.
AU - Bech, Martin
AU - Mueller, Mark
AU - Velroyen, Astrid
AU - Notohamiprodjo, Mike
AU - Bamberg, Fabian
AU - Auweter, Sigrid
AU - Reiser, Maximilian
AU - Eickelberg, Oliver
AU - Pfeiffer, Franz
N1 - Publisher Copyright:
© 2015 Wolters Kluwer Health, Inc.
PY - 2015/7/22
Y1 - 2015/7/22
N2 - Objectives The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Materials and Methods Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Results Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher for dark-field imaging than those for conventional transmission images. Conclusions X-ray dark-field radiography can reliably visualize different stages of emphysema in vivo and demonstrates significantly higher diagnostic accuracy for early stages of emphysema than conventional attenuation-based radiography.
AB - Objectives The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Materials and Methods Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Results Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher for dark-field imaging than those for conventional transmission images. Conclusions X-ray dark-field radiography can reliably visualize different stages of emphysema in vivo and demonstrates significantly higher diagnostic accuracy for early stages of emphysema than conventional attenuation-based radiography.
KW - early diagnosis
KW - grating-based x-ray imaging x-ray phase-contrast imaging
KW - pulmonary emphysema
KW - x-ray dark-field imaging
UR - http://www.scopus.com/inward/record.url?scp=84931835038&partnerID=8YFLogxK
U2 - 10.1097/RLI.0000000000000147
DO - 10.1097/RLI.0000000000000147
M3 - Article
C2 - 25761095
AN - SCOPUS:84931835038
SN - 0020-9996
VL - 50
SP - 430
EP - 435
JO - Investigative Radiology
JF - Investigative Radiology
IS - 7
ER -