TY - JOUR
T1 - In-situ measurement of oxygen concentration under high pressure and the application to oxygen permeation through polymer films
AU - Sterr, Julia
AU - Rötzer, Katharina
AU - Weck, Kathrin
AU - Wirth, Andreas Leonhard Karl
AU - Fleckenstein, Benedikt Stefan
AU - Langowski, Horst Christian
N1 - Publisher Copyright:
© 2015 AIP Publishing LLC.
PY - 2015/9/21
Y1 - 2015/9/21
N2 - Up until now, gas permeation through polymers under high pressure has not been able to be measured continuously. The combination of a special high pressure cell and a commercially available fluorescence-based oxygen measurement system allows in-situ monitoring of oxygen permeation through a polymer sample under pressure in an aqueous environment. The principle of the oxygen sensor is based on dynamic fluorescence quenching and measurement of the fluorescence decay time. It was observed that the decay time increases non-linearly with the applied pressure, and hence, the displayed oxygen concentration has to be corrected. This deviation between the measured and the real concentration depends not only on the pressure but also on the absolute oxygen concentration in the water. To obtain a calibration curve, tests were performed in the pressure range between 1 and 2000 bars and initial oxygen concentrations in the range between 40 and 280 μmol/l. The polynomial calibration curve was of the fourth order, describing the raw data with a coefficient of determination R2 > 0.99. The effective oxygen permeation through polymeric samples can be calculated with this function. A pressure hysteresis test was undertaken but no hysteresis was found. No temperature dependence of the oxygen sensor signal was observed in the range between 20°C and 30°C. This study presents for the first time data showing the oxygen permeation rates through a polyethylene film in the pressure range between 1 and 2000 bars at 23°C.
AB - Up until now, gas permeation through polymers under high pressure has not been able to be measured continuously. The combination of a special high pressure cell and a commercially available fluorescence-based oxygen measurement system allows in-situ monitoring of oxygen permeation through a polymer sample under pressure in an aqueous environment. The principle of the oxygen sensor is based on dynamic fluorescence quenching and measurement of the fluorescence decay time. It was observed that the decay time increases non-linearly with the applied pressure, and hence, the displayed oxygen concentration has to be corrected. This deviation between the measured and the real concentration depends not only on the pressure but also on the absolute oxygen concentration in the water. To obtain a calibration curve, tests were performed in the pressure range between 1 and 2000 bars and initial oxygen concentrations in the range between 40 and 280 μmol/l. The polynomial calibration curve was of the fourth order, describing the raw data with a coefficient of determination R2 > 0.99. The effective oxygen permeation through polymeric samples can be calculated with this function. A pressure hysteresis test was undertaken but no hysteresis was found. No temperature dependence of the oxygen sensor signal was observed in the range between 20°C and 30°C. This study presents for the first time data showing the oxygen permeation rates through a polyethylene film in the pressure range between 1 and 2000 bars at 23°C.
UR - http://www.scopus.com/inward/record.url?scp=84942694153&partnerID=8YFLogxK
U2 - 10.1063/1.4931399
DO - 10.1063/1.4931399
M3 - Article
AN - SCOPUS:84942694153
SN - 0021-9606
VL - 143
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 11
M1 - 114201
ER -