In Situ Growth of All-Inorganic Perovskite Single Crystal Arrays on Electron Transport Layer

Xiaobing Tang, Wei Chen, Dan Wu, Aijing Gao, Gaomin Li, Jiayun Sun, Kangyuan Yi, Zhaojin Wang, Guotao Pang, Hongcheng Yang, Renjun Guo, Haochen Liu, Huaying Zhong, Mingyuan Huang, Rui Chen, Peter Müller-Buschbaum, Xiao Wei Sun, Kai Wang

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Directly growing perovskite single crystals on charge carrier transport layers will unravel a promising route for the development of emerging optoelectronic devices. Herein, in situ growth of high-quality all-inorganic perovskite (CsPbBr3) single crystal arrays (PeSCAs) on cubic zinc oxide (c-ZnO) is reported, which is used as an inorganic electron transport layer in optoelectronic devices, via a facile spin-coating method. The PeSCAs consist of rectangular thin microplatelets of 6–10 µm in length and 2–3 µm in width. The deposited c-ZnO enables the formation of phase-pure and highly crystallized cubic perovskites via an epitaxial lattice coherence of (100)CsPbBr3∥(100)c-ZnO, which is further confirmed by grazing incidence wide-angle X-ray scattering. The PeSCAs demonstrate a significant structural stability of 26 days with a 9 days excellent photoluminescence stability in ambient environment, which is much superior to the perovskite nanocrystals (PeNCs). The high crystallinity of the PeSCAs allows for a lower density of trap states, longer carrier lifetimes, and narrower energetic disorder for excitons, which leads to a faster diffusion rate than PeNCs. These results unravel the possibility of creating the interface toward c-ZnO heterogeneous layer, which is a major step for the realization of a better integration of perovskites and charge carrier transport layers.

Original languageEnglish
Article number1902767
JournalAdvanced Science
Volume7
Issue number11
DOIs
StatePublished - 1 Jun 2020

Keywords

  • CsPbBr single crystals
  • cubic ZnO
  • electron-transport layers
  • optoelectronic devices
  • perovskites

Fingerprint

Dive into the research topics of 'In Situ Growth of All-Inorganic Perovskite Single Crystal Arrays on Electron Transport Layer'. Together they form a unique fingerprint.

Cite this