TY - JOUR
T1 - In Situ GISAXS Observation and Large Area Homogeneity Study of Slot-Die Printed PS-b-P4VP and PS-b-P4VP/FeCl3 Thin Films
AU - Yin, Shanshan
AU - Tian, Ting
AU - Weindl, Christian L.
AU - Wienhold, Kerstin S.
AU - Ji, Qing
AU - Cheng, Yajun
AU - Li, Yanan
AU - Papadakis, Christine M.
AU - Schwartzkopf, Matthias
AU - Roth, Stephan V.
AU - Müller-Buschbaum, Peter
N1 - Publisher Copyright:
© 2022 American Chemical Society
PY - 2022/1/19
Y1 - 2022/1/19
N2 - Mesoporous hematite (α-Fe2O3) thin films with high surface-to-volume ratios show great potential as photoelectrodes or electrochemical electrodes in energy conversion and storage. In the present work, with the assistance of an up-scalable slot-die coating technique, locally highly ordered α-Fe2O3 thin films are successfully printed based on the amphiphilic diblock copolymer poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) as a structure-directing agent. Pure PS-b-P4VP films are printed under the same conditions for comparison. The micellization of the diblock copolymer in solution, the film formation process of the printed thin films, the homogeneity of the dry films in the lateral and vertical direction as well as the morphological and compositional information on the calcined hybrid PS-b-P4VP/FeCl3 thin film are investigated. Because of convection during the solvent evaporation process, a similar dimple-type structure of vertically aligned cylindrical PS domains in a P4VP matrix developed for both printed PS-b-P4VP and hybrid PS-b-P4VP/FeCl3 thin films. The coordination effect between the Fe3+ ions and the vinylpyridine groups significantly affects the attachment ability of the P4VP chains to the silicon substrate. Accordingly, distinct feature sizes and homogeneity in the lateral direction, as well as the thicknesses in the perpendicular direction, are demonstrated in the two printed films. By removing the polymer template from the hybrid PS-b-P4VP/FeCl3 film at high temperature, a locally highly ordered mesoporous α-Fe2O3 film is obtained. Thus, a facile and up-scalable printing technique is presented for producing homogeneous mesoporous α-Fe2O3 thin films.
AB - Mesoporous hematite (α-Fe2O3) thin films with high surface-to-volume ratios show great potential as photoelectrodes or electrochemical electrodes in energy conversion and storage. In the present work, with the assistance of an up-scalable slot-die coating technique, locally highly ordered α-Fe2O3 thin films are successfully printed based on the amphiphilic diblock copolymer poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) as a structure-directing agent. Pure PS-b-P4VP films are printed under the same conditions for comparison. The micellization of the diblock copolymer in solution, the film formation process of the printed thin films, the homogeneity of the dry films in the lateral and vertical direction as well as the morphological and compositional information on the calcined hybrid PS-b-P4VP/FeCl3 thin film are investigated. Because of convection during the solvent evaporation process, a similar dimple-type structure of vertically aligned cylindrical PS domains in a P4VP matrix developed for both printed PS-b-P4VP and hybrid PS-b-P4VP/FeCl3 thin films. The coordination effect between the Fe3+ ions and the vinylpyridine groups significantly affects the attachment ability of the P4VP chains to the silicon substrate. Accordingly, distinct feature sizes and homogeneity in the lateral direction, as well as the thicknesses in the perpendicular direction, are demonstrated in the two printed films. By removing the polymer template from the hybrid PS-b-P4VP/FeCl3 film at high temperature, a locally highly ordered mesoporous α-Fe2O3 film is obtained. Thus, a facile and up-scalable printing technique is presented for producing homogeneous mesoporous α-Fe2O3 thin films.
KW - PS-b-P4VP
KW - in situ GISAXS
KW - mesoporous thin-film
KW - self-assembly
KW - slot-die printing
KW - α-FeO
UR - http://www.scopus.com/inward/record.url?scp=85122693781&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c19797
DO - 10.1021/acsami.1c19797
M3 - Article
C2 - 34982535
AN - SCOPUS:85122693781
SN - 1944-8244
VL - 14
SP - 3143
EP - 3155
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 2
ER -