TY - JOUR
T1 - In situ determination of sulfate turnover in peatlands
T2 - A down-scaled push-pull tracer technique
AU - Goldhammer, Tobias
AU - Einsiedl, Florian
AU - Blodau, Christian
PY - 2008/10
Y1 - 2008/10
N2 - Bacterial sulfate reduction (BSR) is a key process in anaerobic respiration in wetlands and may have considerable impacts on methane emissions. A method to determine sulfate production and consumption in situ is lacking to date. We applied a single-well, injection-withdrawal tracer test for the in situ determination of potential sulfate turnover in a northern temperate peatland. Piezometers were installed in three peat depth levels (20, 30, and 50 cm) during summer 2004, and three series of injection-withdrawal cycles were carried out over a period of several days. Turnover rates of sulfate, calculated from first-order-reaction constant k (-0.097 to 0.053 h-1) and pore-water sulfate concentrations (approx. 10 μmol L-1), ranged from -1.3 to -9.0 nmol cm-3 d-1 for reduction and from +0.7 to +25.4 nmol cm-2 d-1 for production, which occurred after infiltration of water following a heavy rainstorm. Analysis of stable isotopes in peat-water sulfate revealed slightly increasing δ34S values and decreasing sulfate concentrations indicating the presence of BSR. The calculated low sulfur-fractionation factors of <2‰ are in line with high sulfate-reduction rates during BSR. Routine application will require technical optimization, but the method seems a promising addition to common ex situ techniques, as the investigated soil is not structurally altered. The method can furthermore be applied at low expense even in remote locations.
AB - Bacterial sulfate reduction (BSR) is a key process in anaerobic respiration in wetlands and may have considerable impacts on methane emissions. A method to determine sulfate production and consumption in situ is lacking to date. We applied a single-well, injection-withdrawal tracer test for the in situ determination of potential sulfate turnover in a northern temperate peatland. Piezometers were installed in three peat depth levels (20, 30, and 50 cm) during summer 2004, and three series of injection-withdrawal cycles were carried out over a period of several days. Turnover rates of sulfate, calculated from first-order-reaction constant k (-0.097 to 0.053 h-1) and pore-water sulfate concentrations (approx. 10 μmol L-1), ranged from -1.3 to -9.0 nmol cm-3 d-1 for reduction and from +0.7 to +25.4 nmol cm-2 d-1 for production, which occurred after infiltration of water following a heavy rainstorm. Analysis of stable isotopes in peat-water sulfate revealed slightly increasing δ34S values and decreasing sulfate concentrations indicating the presence of BSR. The calculated low sulfur-fractionation factors of <2‰ are in line with high sulfate-reduction rates during BSR. Routine application will require technical optimization, but the method seems a promising addition to common ex situ techniques, as the investigated soil is not structurally altered. The method can furthermore be applied at low expense even in remote locations.
KW - Carbon mineralization
KW - Sulfate reduction
KW - Sulfur cycling
KW - Wetland
UR - http://www.scopus.com/inward/record.url?scp=54949103167&partnerID=8YFLogxK
U2 - 10.1002/jpln.200700225
DO - 10.1002/jpln.200700225
M3 - Article
AN - SCOPUS:54949103167
SN - 1436-8730
VL - 171
SP - 740
EP - 750
JO - Journal of Plant Nutrition and Soil Science
JF - Journal of Plant Nutrition and Soil Science
IS - 5
ER -