TY - JOUR
T1 - In Situ Ambient Preparation of Perovskite-Poly(l -lactic acid) Phosphors for Highly Stable and Efficient Hybrid Light-Emitting Diodes
AU - Duan, Yanyan
AU - Yin, Guang Zhong
AU - Wang, De Yi
AU - Costa, Rubén D.
N1 - Publisher Copyright:
© 2021 American Chemical Society. All rights reserved.
PY - 2021/5/12
Y1 - 2021/5/12
N2 - Metal halide perovskite (MHP)-based phosphor-converted light-emitting diodes (pc-LEDs) are limited by the low MHP stability under storage/operation conditions. A few works have recently established the in situ synthesis of MHPs into polymer matrices as an effective strategy to enhance the stability of MHP with a low-cost fabrication. However, this is limited to petrochemical-based polymers. Herein, the first in situ ambient preparation of highly luminescent and stable MHP-biopolymer filters (MAPbBr3 nanocrystals as an emitter and poly(l-lactic acid) (PLLA) as the matrix) with arbitrary areas (up to ca. 300 cm2) is reported. The MAPbBr3-PLLA phosphors feature a narrow emission (25 nm) with excellent photoluminescence quantum yields (>85%) and stability under ambient storage, water, and thermal stress. This is corroborated in green pc-LEDs featuring a low-efficiency roll-off, an excellent operational stability of ca. 600 h, and high luminous efficiencies of 65 lm W-1 that stand out compared to the prior state of the art (e.g., an average lifetime of 200 h at 50 lm W-1). The filters are further exploited to fabricate white-emitting pc-LEDs with efficiencies of ca. 73 lm W-1 and x/y CIE color coordinates of 0.33/0.32. Overall, this work establishes a straightforward (one-pot/in situ) and low-cost preparation (ambient/room temperature) of highly efficient and stable MHP-biopolymer phosphors for highly performing and more sustainable lighting devices.
AB - Metal halide perovskite (MHP)-based phosphor-converted light-emitting diodes (pc-LEDs) are limited by the low MHP stability under storage/operation conditions. A few works have recently established the in situ synthesis of MHPs into polymer matrices as an effective strategy to enhance the stability of MHP with a low-cost fabrication. However, this is limited to petrochemical-based polymers. Herein, the first in situ ambient preparation of highly luminescent and stable MHP-biopolymer filters (MAPbBr3 nanocrystals as an emitter and poly(l-lactic acid) (PLLA) as the matrix) with arbitrary areas (up to ca. 300 cm2) is reported. The MAPbBr3-PLLA phosphors feature a narrow emission (25 nm) with excellent photoluminescence quantum yields (>85%) and stability under ambient storage, water, and thermal stress. This is corroborated in green pc-LEDs featuring a low-efficiency roll-off, an excellent operational stability of ca. 600 h, and high luminous efficiencies of 65 lm W-1 that stand out compared to the prior state of the art (e.g., an average lifetime of 200 h at 50 lm W-1). The filters are further exploited to fabricate white-emitting pc-LEDs with efficiencies of ca. 73 lm W-1 and x/y CIE color coordinates of 0.33/0.32. Overall, this work establishes a straightforward (one-pot/in situ) and low-cost preparation (ambient/room temperature) of highly efficient and stable MHP-biopolymer phosphors for highly performing and more sustainable lighting devices.
KW - biopolymers
KW - hybrid light-emitting diodes
KW - in situ ambient preparation
KW - metal halide perovskite
KW - perovskite phosphors
UR - http://www.scopus.com/inward/record.url?scp=85106447856&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c04025
DO - 10.1021/acsami.1c04025
M3 - Article
C2 - 33908752
AN - SCOPUS:85106447856
SN - 1944-8244
VL - 13
SP - 21800
EP - 21809
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 18
ER -