Abstract
The Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided global long-term observations of mass transport in the Earth system with applications in numerous geophysical fields. In this paper, we targeted the in-orbit performance of the GRACE key instruments, the ACCelerometers (ACC) and the MicroWave ranging Instrument (MWI). For the ACC data, we followed a transplant approach analyzing the residual accelerations from transplanted accelerations of one of the two satellites to the other. For the MWI data, we analyzed the post-fit residuals of the monthly GFZ GRACE RL06 solutions with a focus on stationarity. Based on the analyses for the two test years 2007 and 2014, we derived stochastic models for the two instruments and a combined ACC+MWI stochastic model. While all three ACC axes showed worse performance than their preflight specifications, in 2007, a better ACC performance than in 2014 was observed by a factor of 3.6 due to switched-off satellite thermal control. The GRACE MWI noise showed white noise behavior for frequencies above 10 mHz around the level of (Formula presented.). In the combined ACC+MWI noise model, the ACC part dominated the frequencies below 10 mHz, while the MWI part dominated above 10 mHz. We applied the combined ACC+MWI stochastic models for 2007 and 2014 to the monthly GFZ GRACE RL06 processing. This improved the formal errors and resulted in a comparable noise level of the estimated gravity field parameters. Furthermore, the need for co-estimating empirical parameters was reduced.
Original language | English |
---|---|
Article number | 563 |
Journal | Remote Sensing |
Volume | 15 |
Issue number | 3 |
DOIs | |
State | Published - Feb 2023 |
Keywords
- GRACE
- accelerometer transplant
- empirical parameters
- microwave ranging instrument post-fit residuals
- monthly gravity field determination
- stochastic modeling