Improved synthesis of Clifford+T quantum functionality

Philipp Niemann, Robert Wille, Rolf Drechsler

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

The Clifford+T library provides robust and fault-tolerant realizations for quantum computations. Consequently, (logic) synthesis of Clifford+T quantum circuits became an important research problem. However, previously proposed solutions are either only applicable to very small quantum systems or lead to circuits that are far from being optimal - mainly caused by a local, i.e. column-wise, consideration of the underlying transformation matrix to be synthesized. In this paper, we suggest an improved approach that considers the matrix globally and, by this, overcomes many of these drawbacks. Preliminary evaluations show the promises of this direction.

Original languageEnglish
Title of host publicationProceedings of the 2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages597-600
Number of pages4
ISBN (Electronic)9783981926316
DOIs
StatePublished - 19 Apr 2018
Externally publishedYes
Event2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018 - Dresden, Germany
Duration: 19 Mar 201823 Mar 2018

Publication series

NameProceedings of the 2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018
Volume2018-January

Conference

Conference2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018
Country/TerritoryGermany
CityDresden
Period19/03/1823/03/18

Fingerprint

Dive into the research topics of 'Improved synthesis of Clifford+T quantum functionality'. Together they form a unique fingerprint.

Cite this