TY - GEN
T1 - Improved online algorithms for knapsack and GAP in the random order model
AU - Albers, Susanne
AU - Khan, Arindam
AU - Ladewig, Leon
N1 - Publisher Copyright:
© Susanne Albers, Arindam Khan, and Leon Ladewig.
PY - 2019/9
Y1 - 2019/9
N2 - The knapsack problem is one of the classical problems in combinatorial optimization: Given a set of items, each specified by its size and profit, the goal is to find a maximum profit packing into a knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision, if the current item is packed or discarded forever, must be done immediately and irrevocably upon arrival. We study the online variant in the random order model where the input sequence is a uniform random permutation of the item set. We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our algorithm is based on two new insights: We introduce a novel algorithmic approach that employs two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem. The generalized assignment problem (GAP) includes, besides the knapsack problem, several important problems related to scheduling and matching. We show that in the same online setting, applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)].
AB - The knapsack problem is one of the classical problems in combinatorial optimization: Given a set of items, each specified by its size and profit, the goal is to find a maximum profit packing into a knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision, if the current item is packed or discarded forever, must be done immediately and irrevocably upon arrival. We study the online variant in the random order model where the input sequence is a uniform random permutation of the item set. We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our algorithm is based on two new insights: We introduce a novel algorithmic approach that employs two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem. The generalized assignment problem (GAP) includes, besides the knapsack problem, several important problems related to scheduling and matching. We show that in the same online setting, applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)].
KW - Knapsack problem
KW - Online algorithms
KW - Random order model
UR - http://www.scopus.com/inward/record.url?scp=85072872337&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.APPROX-RANDOM.2019.22
DO - 10.4230/LIPIcs.APPROX-RANDOM.2019.22
M3 - Conference contribution
AN - SCOPUS:85072872337
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019
A2 - Achlioptas, Dimitris
A2 - Vegh, Laszlo A.
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 22nd International Conference on Approximation Algorithms for Combinatorial Optimization Problems and 23rd International Conference on Randomization and Computation, APPROX/RANDOM 2019
Y2 - 20 September 2019 through 22 September 2019
ER -