Improved online algorithms for knapsack and GAP in the random order model

Susanne Albers, Arindam Khan, Leon Ladewig

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

The knapsack problem is one of the classical problems in combinatorial optimization: Given a set of items, each specified by its size and profit, the goal is to find a maximum profit packing into a knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision, if the current item is packed or discarded forever, must be done immediately and irrevocably upon arrival. We study the online variant in the random order model where the input sequence is a uniform random permutation of the item set. We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our algorithm is based on two new insights: We introduce a novel algorithmic approach that employs two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem. The generalized assignment problem (GAP) includes, besides the knapsack problem, several important problems related to scheduling and matching. We show that in the same online setting, applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)].

Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019
EditorsDimitris Achlioptas, Laszlo A. Vegh
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771252
DOIs
StatePublished - Sep 2019
Event22nd International Conference on Approximation Algorithms for Combinatorial Optimization Problems and 23rd International Conference on Randomization and Computation, APPROX/RANDOM 2019 - Cambridge, United States
Duration: 20 Sep 201922 Sep 2019

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume145
ISSN (Print)1868-8969

Conference

Conference22nd International Conference on Approximation Algorithms for Combinatorial Optimization Problems and 23rd International Conference on Randomization and Computation, APPROX/RANDOM 2019
Country/TerritoryUnited States
CityCambridge
Period20/09/1922/09/19

Keywords

  • Knapsack problem
  • Online algorithms
  • Random order model

Fingerprint

Dive into the research topics of 'Improved online algorithms for knapsack and GAP in the random order model'. Together they form a unique fingerprint.

Cite this