Abstract
Neuronal culture was used to investigate neuronal function in physiological and pathological conditions. Despite its inevitability, primary neuronal culture remained a gold standard method that requires laborious preparation, intensive training, and animal resources. To circum-vent the shortfalls of primary neuronal preparations and efficiently give rise to functional neurons, we combine a neural stem cell culture method with a direct cell type-conversion approach. The lucidity of this method enables the efficient preparation of functional neurons from mouse neural progenitor cells on demand. We demonstrate that induced neurons (NPC-iNs) by this method make synaptic connections, elicit neuronal activity-dependent cellular responses, and develop functional neuronal networks. This method will provide a concise platform for functional neuronal assess-ments. This indeed offers a perspective for using these characterized neuronal networks for investigating plasticity mechanisms, drug screening assays, and probing the molecular and biophysical basis of neurodevelopmental and neurodegenerative diseases.
Original language | English |
---|---|
Article number | 1894 |
Journal | Cells |
Volume | 10 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2021 |
Externally published | Yes |
Keywords
- Induced neurons
- Neural stem cells
- Neuronal culture
- Neuronal network