Improved Contact Stability for Admittance Control of Industrial Robots with Inverse Model Compensation

Kangwagye Samuel, Kevin Haninger, Sami Haddadin, Sehoon Oh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Industrial robots have increased payload, repeatability, and reach compared to collaborative robots, however, they have a fixed position controller and low intrinsic admittance. This makes realizing safe contact challenging due to large contact force overshoots in contact transitions and contact instability when the environment and robot dynamics are coupled. To improve safe contact on industrial robots, we propose an admittance controller with inverse model compensation, designed and implemented outside the position controller. By including both the inner loop and outer loop dynamics in its design, the proposed method achieves expanded admittance in terms of increasing both gain and cutoff frequency of the desired admittance. Results from theoretical analyses and experiments on a commercial industrial robot show that the proposed method improves rendering of the desired admittance while maintaining contact stability. We further validate this by conducting actual assembly tasks of plug insertion with fine positioning, switch insertion onto the rail, and colliding the robot end effector with random objects and surfaces, as seen at https://youtu.be/8XfkdHEdWDs.

Original languageEnglish
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages746-752
Number of pages7
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: 14 Oct 202418 Oct 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period14/10/2418/10/24

Fingerprint

Dive into the research topics of 'Improved Contact Stability for Admittance Control of Industrial Robots with Inverse Model Compensation'. Together they form a unique fingerprint.

Cite this