Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple L-shapes, spirals, and more

Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, Andreas Wiese

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

In the 2-Dimensional Knapsack problem (2DK) we are given a square knapsack and a collection of n rectangular items with integer sizes and profits. Our goal is to find the most profitable subset of items that can be packed non-overlappingly into the knapsack. The currently best known polynomial-time approximation factor for 2DK is 17/9 + ε < 1.89 and there is a (3/2 + ε)-approximation algorithm if we are allowed to rotate items by 90 degrees [Gálvez et al., FOCS 2017]. In this paper, we give (4/3 + ε)-approximation algorithms in polynomial time for both cases, assuming that all input data are integers polynomially bounded in n. Gálvez et al.'s algorithm for 2DK partitions the knapsack into a constant number of rectangular regions plus one L-shaped region and packs items into those in a structured way. We generalize this approach by allowing up to a constant number of more general regions that can have the shape of an L, a U, a Z, a spiral, and more, and therefore obtain an improved approximation ratio. In particular, we present an algorithm that computes the essentially optimal structured packing into these regions.

Original languageEnglish
Title of host publication37th International Symposium on Computational Geometry, SoCG 2021
EditorsKevin Buchin, Eric Colin de Verdiere
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771849
DOIs
StatePublished - 1 Jun 2021
Externally publishedYes
Event37th International Symposium on Computational Geometry, SoCG 2021 - Virtual, Buffalo, United States
Duration: 7 Jun 202111 Jun 2021

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume189
ISSN (Print)1868-8969

Conference

Conference37th International Symposium on Computational Geometry, SoCG 2021
Country/TerritoryUnited States
CityVirtual, Buffalo
Period7/06/2111/06/21

Keywords

  • Approximation algorithms
  • Geometric packing
  • Two-dimensional knapsack

Fingerprint

Dive into the research topics of 'Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple L-shapes, spirals, and more'. Together they form a unique fingerprint.

Cite this