TY - GEN
T1 - Improved approximation algorithms for 2-dimensional knapsack
T2 - 37th International Symposium on Computational Geometry, SoCG 2021
AU - Gálvez, Waldo
AU - Grandoni, Fabrizio
AU - Khan, Arindam
AU - Ramírez-Romero, Diego
AU - Wiese, Andreas
N1 - Publisher Copyright:
© Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, and Andreas Wiese; licensed under Creative Commons License CC-BY 4.0 37th International Symposium on Computational Geometry (SoCG 2021).
PY - 2021/6/1
Y1 - 2021/6/1
N2 - In the 2-Dimensional Knapsack problem (2DK) we are given a square knapsack and a collection of n rectangular items with integer sizes and profits. Our goal is to find the most profitable subset of items that can be packed non-overlappingly into the knapsack. The currently best known polynomial-time approximation factor for 2DK is 17/9 + ε < 1.89 and there is a (3/2 + ε)-approximation algorithm if we are allowed to rotate items by 90 degrees [Gálvez et al., FOCS 2017]. In this paper, we give (4/3 + ε)-approximation algorithms in polynomial time for both cases, assuming that all input data are integers polynomially bounded in n. Gálvez et al.'s algorithm for 2DK partitions the knapsack into a constant number of rectangular regions plus one L-shaped region and packs items into those in a structured way. We generalize this approach by allowing up to a constant number of more general regions that can have the shape of an L, a U, a Z, a spiral, and more, and therefore obtain an improved approximation ratio. In particular, we present an algorithm that computes the essentially optimal structured packing into these regions.
AB - In the 2-Dimensional Knapsack problem (2DK) we are given a square knapsack and a collection of n rectangular items with integer sizes and profits. Our goal is to find the most profitable subset of items that can be packed non-overlappingly into the knapsack. The currently best known polynomial-time approximation factor for 2DK is 17/9 + ε < 1.89 and there is a (3/2 + ε)-approximation algorithm if we are allowed to rotate items by 90 degrees [Gálvez et al., FOCS 2017]. In this paper, we give (4/3 + ε)-approximation algorithms in polynomial time for both cases, assuming that all input data are integers polynomially bounded in n. Gálvez et al.'s algorithm for 2DK partitions the knapsack into a constant number of rectangular regions plus one L-shaped region and packs items into those in a structured way. We generalize this approach by allowing up to a constant number of more general regions that can have the shape of an L, a U, a Z, a spiral, and more, and therefore obtain an improved approximation ratio. In particular, we present an algorithm that computes the essentially optimal structured packing into these regions.
KW - Approximation algorithms
KW - Geometric packing
KW - Two-dimensional knapsack
UR - http://www.scopus.com/inward/record.url?scp=85108199519&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.SoCG.2021.39
DO - 10.4230/LIPIcs.SoCG.2021.39
M3 - Conference contribution
AN - SCOPUS:85108199519
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 37th International Symposium on Computational Geometry, SoCG 2021
A2 - Buchin, Kevin
A2 - de Verdiere, Eric Colin
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Y2 - 7 June 2021 through 11 June 2021
ER -