Abstract
We consider new implicit-explicit (IMEX) Runge-Kutta methods for hyperbolic systems of conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stability-preserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit Runge-Kutta method (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero relaxation limit. High accuracy in space is obtained by Weighted Essentially Non Oscillatory (WENO) reconstruction. After a description of the mathematical properties of the schemes, several applications will be presented.
Original language | English |
---|---|
Pages (from-to) | 129-155 |
Number of pages | 27 |
Journal | Journal of Scientific Computing |
Volume | 25 |
Issue number | 1 |
DOIs | |
State | Published - Oct 2005 |
Externally published | Yes |
Keywords
- High order shock capturing schemes
- Hyperbolic systems with relaxation
- Runge-Kutta methods
- Stiff systems