@inproceedings{63cb52191a36407fa8d84af2c11c3e66,
title = "Impedance control: Learning stability in human sensorimotor control",
abstract = "The human sensorimotor control system generates movement by adapting and controlling the mechanics of the musculoskeletal system. To generate skilful movements the sensorimotor control system must be able to predict and compensate for any disturbances generated either in our own body or in the external environment. While stable and repeatable perturbations can be easily adapted through iterative learning, instability and unpredictability require a different approach: impedance control. Here I outline the arguments for impedance control as a fundamental process of human adaptation as well as describe evidence suggesting the manner in which such impedance can be learned in order to ensure the stability of the neuro-mechanical system.",
author = "Franklin, {David W.}",
note = "Publisher Copyright: {\textcopyright} 2015 IEEE.; 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 ; Conference date: 25-08-2015 Through 29-08-2015",
year = "2015",
month = nov,
day = "4",
doi = "10.1109/EMBC.2015.7318636",
language = "English",
series = "Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1421--1424",
booktitle = "2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015",
}