TY - JOUR
T1 - Impact of NCFET Technology on Eliminating the Cooling Cost and Boosting the Efficiency of Google TPU
AU - Salamin, Sami
AU - Zervakis, Georgios
AU - Klemme, Florian
AU - Kattan, Hammam
AU - Chauhan, Yogesh
AU - Henkel, Jorg
AU - Amrouch, Hussam
N1 - Publisher Copyright:
© 1968-2012 IEEE.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Recent breakthroughs in Neural Networks (NNs) led to significant accuracy improvements of several machine learning applications such as image classification and voice recognition. However, this accuracy improvement comes at the cost of an immense increase in computation demands. NNs became one of the most common and computationally intensive workloads in today's datacenters. To address these computational demands, Google announced in 2016 the Tensor Processing Unit (TPU), an advanced custom ASIC accelerator for NN inference. Two new TPU versions (v2 and v3) followed in 2017 and 2018 that support also training. Google TPUv3 packs an immense processing power (mathrm{90TFLOPS}90 TFLOPS per chip) in a tiny and condensed area, leading to very high on-chip power densities and thus excessive temperature. In this article, superlattice thermoelectric cooling, which is one of the emerging on-chip cooling, is considered as an advanced cooling example for Google TPU and we investigate the impact of Negative Capacitance FET (NCFET), which is one of the recent emerging technologies, on the cooling and efficiency of TPU. Through full-chip design, of the computational core of the TPU, based on 14mathrm{nm}14 nm Intel FinFET technology and multiphysics temperature simulations, we demonstrate that NCFET can significantly minimize the required cooling-cost. More than 4000 NCFET configurations are evaluated in order to traverse the entire design space defined by the thickness of the ferroelectric layer of NCFET, the operating voltage, cooling, and the operating frequency, in addition to all possible FinFET's configurations. Moreover, our experimental evaluation shows that by eliminating the cooling cost, NCFET delivers 2.8x higher efficiency compared to the conventional FinFET baseline.
AB - Recent breakthroughs in Neural Networks (NNs) led to significant accuracy improvements of several machine learning applications such as image classification and voice recognition. However, this accuracy improvement comes at the cost of an immense increase in computation demands. NNs became one of the most common and computationally intensive workloads in today's datacenters. To address these computational demands, Google announced in 2016 the Tensor Processing Unit (TPU), an advanced custom ASIC accelerator for NN inference. Two new TPU versions (v2 and v3) followed in 2017 and 2018 that support also training. Google TPUv3 packs an immense processing power (mathrm{90TFLOPS}90 TFLOPS per chip) in a tiny and condensed area, leading to very high on-chip power densities and thus excessive temperature. In this article, superlattice thermoelectric cooling, which is one of the emerging on-chip cooling, is considered as an advanced cooling example for Google TPU and we investigate the impact of Negative Capacitance FET (NCFET), which is one of the recent emerging technologies, on the cooling and efficiency of TPU. Through full-chip design, of the computational core of the TPU, based on 14mathrm{nm}14 nm Intel FinFET technology and multiphysics temperature simulations, we demonstrate that NCFET can significantly minimize the required cooling-cost. More than 4000 NCFET configurations are evaluated in order to traverse the entire design space defined by the thickness of the ferroelectric layer of NCFET, the operating voltage, cooling, and the operating frequency, in addition to all possible FinFET's configurations. Moreover, our experimental evaluation shows that by eliminating the cooling cost, NCFET delivers 2.8x higher efficiency compared to the conventional FinFET baseline.
KW - Google TPU
KW - Negative capacitance transistor (NCFET)
KW - multiphysics
KW - neural processing unit
KW - thermoelectric cooling
UR - http://www.scopus.com/inward/record.url?scp=85102690724&partnerID=8YFLogxK
U2 - 10.1109/TC.2021.3065454
DO - 10.1109/TC.2021.3065454
M3 - Article
AN - SCOPUS:85102690724
SN - 0018-9340
VL - 71
SP - 906
EP - 918
JO - IEEE Transactions on Computers
JF - IEEE Transactions on Computers
IS - 4
ER -