TY - JOUR
T1 - Identifying Dynamic Memory Effects on Vegetation State Using Recurrent Neural Networks
AU - Kraft, Basil
AU - Jung, Martin
AU - Körner, Marco
AU - Requena Mesa, Christian
AU - Cortés, José
AU - Reichstein, Markus
N1 - Publisher Copyright:
Copyright © 2019 Kraft, Jung, Körner, Requena Mesa, Cortés and Reichstein.
PY - 2019/10/23
Y1 - 2019/10/23
N2 - Vegetation state is largely driven by climate and the complexity of involved processes leads to non-linear interactions over multiple time-scales. Recently, the role of temporally lagged dependencies, so-called memory effects, has been emphasized and studied using data-driven methods, relying on a vast amount of Earth observation and climate data. However, the employed models are often not able to represent the highly non-linear processes and do not represent time explicitly. Thus, data-driven study of vegetation dynamics demands new approaches that are able to model complex sequences. The success of Recurrent Neural Networks (RNNs) in other disciplines dealing with sequential data, such as Natural Language Processing, suggests adoption of this method for Earth system sciences. Here, we used a Long Short-Term Memory (LSTM) architecture to fit a global model for Normalized Difference Vegetation Index (NDVI), a proxy for vegetation state, by using climate time-series and static variables representing soil properties and land cover as predictor variables. Furthermore, a set of permutation experiments was performed with the objective to identify memory effects and to better understand the scales on which they act under different environmental conditions. This was done by comparing models that have limited access to temporal context, which was achieved through sequence permutation during model training. We performed a cross-validation with spatio-temporal blocking to deal with the auto-correlation present in the data and to increase the generalizability of the findings. With a full temporal model, global NDVI was predicted with R2 of 0.943 and RMSE of 0.056. The temporal model explained 14% more variance than the non-memory model on global level. The strongest differences were found in arid and semiarid regions, where the improvement was up to 25%. Our results show that memory effects matter on global scale, with the strongest effects occurring in sub-tropical and transitional water-driven biomes.
AB - Vegetation state is largely driven by climate and the complexity of involved processes leads to non-linear interactions over multiple time-scales. Recently, the role of temporally lagged dependencies, so-called memory effects, has been emphasized and studied using data-driven methods, relying on a vast amount of Earth observation and climate data. However, the employed models are often not able to represent the highly non-linear processes and do not represent time explicitly. Thus, data-driven study of vegetation dynamics demands new approaches that are able to model complex sequences. The success of Recurrent Neural Networks (RNNs) in other disciplines dealing with sequential data, such as Natural Language Processing, suggests adoption of this method for Earth system sciences. Here, we used a Long Short-Term Memory (LSTM) architecture to fit a global model for Normalized Difference Vegetation Index (NDVI), a proxy for vegetation state, by using climate time-series and static variables representing soil properties and land cover as predictor variables. Furthermore, a set of permutation experiments was performed with the objective to identify memory effects and to better understand the scales on which they act under different environmental conditions. This was done by comparing models that have limited access to temporal context, which was achieved through sequence permutation during model training. We performed a cross-validation with spatio-temporal blocking to deal with the auto-correlation present in the data and to increase the generalizability of the findings. With a full temporal model, global NDVI was predicted with R2 of 0.943 and RMSE of 0.056. The temporal model explained 14% more variance than the non-memory model on global level. The strongest differences were found in arid and semiarid regions, where the improvement was up to 25%. Our results show that memory effects matter on global scale, with the strongest effects occurring in sub-tropical and transitional water-driven biomes.
KW - lag effects
KW - long short-term memory (LSTM) network
KW - memory effects
KW - normalized difference vegetation index (NDVI)
KW - recurrent neural network (RNN)
UR - http://www.scopus.com/inward/record.url?scp=85080042336&partnerID=8YFLogxK
U2 - 10.3389/fdata.2019.00031
DO - 10.3389/fdata.2019.00031
M3 - Article
AN - SCOPUS:85080042336
SN - 2624-909X
VL - 2
JO - Frontiers in Big Data
JF - Frontiers in Big Data
M1 - 31
ER -