Abstract
Despite being one of the longest known classes of astrophysical transients, novae continue to present modern surprises. The Fermi-LAT discovered that many if not all novae are GeV gamma ray sources, even though theoretical models had not even considered them as a possible source class. More recently, MAGIC and H.E.S.S. detected TeV gamma rays from a nova. Moreover, there is strong evidence that the gamma rays are produced hadronically, and that the long-studied optical emission by novae is also shock-powered. If this is true, novae should emit a neutrino signal correlated with their gamma-ray and optical signals. We present the first search for neutrinos from novae. Because the neutrino energy spectrum is expected to match the gamma-ray spectrum, we use an IceCube DeepCore event selection focused on GeV-TeV neutrinos. We present results from two searches, one for neutrinos correlated with gamma-ray emission and one for neutrinos correlated with optical emission. The event selection presented here is promising for additional astrophysical transients including gamma-ray bursts and gravitational wave sources.
Original language | English |
---|---|
Article number | 1560 |
Journal | Proceedings of Science |
Volume | 444 |
State | Published - 27 Sep 2024 |
Event | 38th International Cosmic Ray Conference, ICRC 2023 - Nagoya, Japan Duration: 26 Jul 2023 → 3 Aug 2023 |