TY - JOUR
T1 - Hypophysectomy prevents ghrelin-induced adiposity and increases gastric ghrelin secretion in rats
AU - Tschöp, Matthias
AU - Flora, David B.
AU - Mayer, John P.
AU - Heiman, Mark L.
PY - 2002/10
Y1 - 2002/10
N2 - Objective: The novel gastric hormone ghrelin has recently been identified as an important modulator of energy homeostasis. Leptin-responsive hypothalamic neuropeptide Y/Agouti-related protein neurons are believed to mediate afferent ghrelin signals. Little is known, however, about ghrelin-induced efferent signals. We therefore investigated if hypothalamic-pituitary axes have a role in transferring ghrelin-induced changes of energy balance to the periphery. Research Methods and Procedures: We subcutaneously injected hypophysectomized, as well as adrenalectomized, thyroidectomized, and sham-operated control rats with GH secretagogues [ghrelin, growth hormone (GH)-releasing peptide] for 1 week. Body weight, food intake, and body composition (chemical carcass analysis) were analyzed and compared with vehicle-treated controls. In addition, we quantified circulating levels of endogenous ghrelin in hypophysectomized and GH-treated normal rats. Results: GH-secretagogue treatment of sham-operated control rats dose-proportionally increased food intake, body weight, and fat mass compared with vehicle-injected controls (p < 0.01). These effects, however, were not observed in ghrelin-treated hypophysectomized, thyroidectomized, or adrenalectomized rats, indicating an essential role for the pituitary axis in ghrelin-induced adiposity. Circulating levels of endogenous ghrelin were reduced by administration of GH in normal rats and were about 3-fold higher in hypophysectomized rats (n = 20, p = 0.001), suggesting a regulatory feedback loop involving the stomach and the pituitary to regulate gastric ghrelin secretion. Discussion: According to these results, the endocrine pituitary is mediating ghrelin-induced changes toward a positive energy balance and is involved in the regulation of ghrelin secretion through a gastro-hypophyseal feedback loop.
AB - Objective: The novel gastric hormone ghrelin has recently been identified as an important modulator of energy homeostasis. Leptin-responsive hypothalamic neuropeptide Y/Agouti-related protein neurons are believed to mediate afferent ghrelin signals. Little is known, however, about ghrelin-induced efferent signals. We therefore investigated if hypothalamic-pituitary axes have a role in transferring ghrelin-induced changes of energy balance to the periphery. Research Methods and Procedures: We subcutaneously injected hypophysectomized, as well as adrenalectomized, thyroidectomized, and sham-operated control rats with GH secretagogues [ghrelin, growth hormone (GH)-releasing peptide] for 1 week. Body weight, food intake, and body composition (chemical carcass analysis) were analyzed and compared with vehicle-treated controls. In addition, we quantified circulating levels of endogenous ghrelin in hypophysectomized and GH-treated normal rats. Results: GH-secretagogue treatment of sham-operated control rats dose-proportionally increased food intake, body weight, and fat mass compared with vehicle-injected controls (p < 0.01). These effects, however, were not observed in ghrelin-treated hypophysectomized, thyroidectomized, or adrenalectomized rats, indicating an essential role for the pituitary axis in ghrelin-induced adiposity. Circulating levels of endogenous ghrelin were reduced by administration of GH in normal rats and were about 3-fold higher in hypophysectomized rats (n = 20, p = 0.001), suggesting a regulatory feedback loop involving the stomach and the pituitary to regulate gastric ghrelin secretion. Discussion: According to these results, the endocrine pituitary is mediating ghrelin-induced changes toward a positive energy balance and is involved in the regulation of ghrelin secretion through a gastro-hypophyseal feedback loop.
KW - Adiposity
KW - Ghrelin
KW - Growth hormone
KW - Hypophysectomy
KW - Pituitary
UR - http://www.scopus.com/inward/record.url?scp=0036777687&partnerID=8YFLogxK
U2 - 10.1038/oby.2002.135
DO - 10.1038/oby.2002.135
M3 - Article
C2 - 12376579
AN - SCOPUS:0036777687
SN - 1071-7323
VL - 10
SP - 991
EP - 999
JO - Obesity Research
JF - Obesity Research
IS - 10
ER -