TY - JOUR
T1 - Hyperspectral reflectance sensing to assess the growth and photosynthetic properties of wheat cultivars exposed to different irrigation rates in an irrigated arid region
AU - El-Hendawy, Salah
AU - Al-Suhaibani, Nasser
AU - Hassan, Wael
AU - Tahir, Mohammad
AU - Schmidhalter, Urs
N1 - Publisher Copyright:
© 2017 El-Hendawy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/8
Y1 - 2017/8
N2 - Simultaneous indirect assessment of multiple and diverse plant parameters in an exact and expeditious manner is becoming imperative in irrigated arid regions, with a view toward creating drought-tolerant genotypes or for the management of precision irrigation. This study aimed to evaluate whether spectral reflectance indices (SRIs) in three parts of the electromagnetic spectrum ((visible-infrared (VIS), near-infrared (NIR)), and shortwave-infrared (SWIR)) could be used to track changes in morphophysiological parameters of wheat cultivars exposed to 1.00, 0.75, and 0.50 of the estimated evapotranspiration (ETc). Significant differences were found in the parameters of growth and photosynthetic efficiency, and canopy spectral reflectance among the three cultivars subjected to different irrigation rates. All parameters were highly and significantly correlated with each other particularly under the 0.50 ETc treatment. The VIS/VIS- and NIR/VIS-based indices were sufficient and suitable for assessing the growth and photosynthetic properties of wheat cultivars similar to those indices based on NIR/NIR, SWIR/NIR, or SWIR/SWIR. Almost all tested SRIs proved to assess growth and photosynthetic parameters, including transpiration rate, more efficiently when regressions were analyzed for each water irrigation rate individually. This study, the type of which has rarely been conducted in irrigated arid regions, indicates that spectral reflectance data can be used as a rapid and non-destructive alternative method for assessment of the growth and photosynthetic efficiency of wheat under a range of water irrigation rates.
AB - Simultaneous indirect assessment of multiple and diverse plant parameters in an exact and expeditious manner is becoming imperative in irrigated arid regions, with a view toward creating drought-tolerant genotypes or for the management of precision irrigation. This study aimed to evaluate whether spectral reflectance indices (SRIs) in three parts of the electromagnetic spectrum ((visible-infrared (VIS), near-infrared (NIR)), and shortwave-infrared (SWIR)) could be used to track changes in morphophysiological parameters of wheat cultivars exposed to 1.00, 0.75, and 0.50 of the estimated evapotranspiration (ETc). Significant differences were found in the parameters of growth and photosynthetic efficiency, and canopy spectral reflectance among the three cultivars subjected to different irrigation rates. All parameters were highly and significantly correlated with each other particularly under the 0.50 ETc treatment. The VIS/VIS- and NIR/VIS-based indices were sufficient and suitable for assessing the growth and photosynthetic properties of wheat cultivars similar to those indices based on NIR/NIR, SWIR/NIR, or SWIR/SWIR. Almost all tested SRIs proved to assess growth and photosynthetic parameters, including transpiration rate, more efficiently when regressions were analyzed for each water irrigation rate individually. This study, the type of which has rarely been conducted in irrigated arid regions, indicates that spectral reflectance data can be used as a rapid and non-destructive alternative method for assessment of the growth and photosynthetic efficiency of wheat under a range of water irrigation rates.
UR - http://www.scopus.com/inward/record.url?scp=85028088925&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0183262
DO - 10.1371/journal.pone.0183262
M3 - Article
C2 - 28829809
AN - SCOPUS:85028088925
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e0183262
ER -