Abstract
We determine the hydrodynamic modes of the superfluid analog of a smectic-A liquid crystal phase, i.e., a state in which both gauge invariance and translational invariance along a single direction are spontaneously broken. Such a superfluid smectic provides an idealized description of the incommensurate supersolid state realized in Bose-Einstein condensates with strong dipolar interactions as well as of the stripe phase in Bose gases with spin-orbit coupling. We show that the presence of a finite normal fluid density in the ground state of these systems gives rise to a well-defined second-sound type mode even at zero temperature. It replaces the diffusive permeation mode of a normal smectic phase and is directly connected with the classic description of supersolids by Andreev and Lifshitz in terms of a propagating defect mode. An analytic expression is derived for the two sound velocities that appear in the longitudinal excitation spectrum. It only depends on the low-energy parameters associated with the two independent broken symmetries, which are the effective layer compression modulus and the superfluid fraction.
Original language | English |
---|---|
Article number | 033104 |
Journal | Journal of Statistical Mechanics: Theory and Experiment |
Volume | 2021 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2021 |
Keywords
- Bose-Einstein condensation
- Cold atoms