TY - JOUR
T1 - Hydrodynamic Limit of Condensing Two-Species Zero Range Processes with Sub-critical Initial Profiles
AU - Dirr, Nicolas
AU - Stamatakis, Marios G.
AU - Zimmer, Johannes
N1 - Publisher Copyright:
© 2017, The Author(s).
PY - 2017/8/1
Y1 - 2017/8/1
N2 - Two-species condensing zero range processes (ZRPs) are interacting particle systems with two species of particles and zero range interaction exhibiting phase separation outside a domain of sub-critical densities. We prove the hydrodynamic limit of nearest neighbour mean zero two-species condensing ZRP with bounded local jump rate for sub-critical initial profiles, i.e., for initial profiles whose image is contained in the region of sub-critical densities. The proof is based on H.T. Yau’s relative entropy method, which relies on the existence of sufficiently regular solutions to the hydrodynamic equation. In the particular case of the species-blind ZRP, we prove that the solutions of the hydrodynamic equation exist globally in time and thus the hydrodynamic limit is valid for all times.
AB - Two-species condensing zero range processes (ZRPs) are interacting particle systems with two species of particles and zero range interaction exhibiting phase separation outside a domain of sub-critical densities. We prove the hydrodynamic limit of nearest neighbour mean zero two-species condensing ZRP with bounded local jump rate for sub-critical initial profiles, i.e., for initial profiles whose image is contained in the region of sub-critical densities. The proof is based on H.T. Yau’s relative entropy method, which relies on the existence of sufficiently regular solutions to the hydrodynamic equation. In the particular case of the species-blind ZRP, we prove that the solutions of the hydrodynamic equation exist globally in time and thus the hydrodynamic limit is valid for all times.
KW - Comparison principles for systems of PDEs
KW - Condensing zero range processes
KW - Hydrodynamic limit
KW - Zero range processes
UR - http://www.scopus.com/inward/record.url?scp=85021744408&partnerID=8YFLogxK
U2 - 10.1007/s10955-017-1827-6
DO - 10.1007/s10955-017-1827-6
M3 - Article
AN - SCOPUS:85021744408
SN - 0022-4715
VL - 168
SP - 794
EP - 825
JO - Journal of Statistical Physics
JF - Journal of Statistical Physics
IS - 4
ER -