TY - GEN
T1 - How a Pattern-based Privacy System Contributes to Improve Context Recognition
AU - Stach, Christoph
AU - Dürr, Frank
AU - Mindermann, Kai
AU - Palanisamy, Saravana Murthy
AU - Wagner, Stefan
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/2
Y1 - 2018/10/2
N2 - As Smart Devices have access to a lot of user-preferential data, they come in handy in any situation. Although such data - as well as the knowledge which can be derived from it - is highly beneficial as apps are able to adapt their services appropriate to the respective context, it also poses a privacy threat. Thus, a lot of research work is done regarding privacy. Yet, all approaches obfuscate certain attributes which has a negative impact on context recognition and thus service quality. Therefore, we introduce a novel access control mechanism called PATRON. The basic idea is to control access to information patterns. For instance, a person suffering from diabetes might not want to reveal his or her unhealthy eating habit, which can be derived from the pattern 'rising blood sugar level' 'adding bread units'. Such a pattern which must not be discoverable by some parties (e. g., insurance companies) is called private pattern whereas a pattern which improves an app's service quality is labeled as public pattern. PATRON employs different techniques to conceal private patterns and, in case of available alternatives, selects the one with the least negative impact on service quality, such that the recognition of public patterns is supported as good as possible.
AB - As Smart Devices have access to a lot of user-preferential data, they come in handy in any situation. Although such data - as well as the knowledge which can be derived from it - is highly beneficial as apps are able to adapt their services appropriate to the respective context, it also poses a privacy threat. Thus, a lot of research work is done regarding privacy. Yet, all approaches obfuscate certain attributes which has a negative impact on context recognition and thus service quality. Therefore, we introduce a novel access control mechanism called PATRON. The basic idea is to control access to information patterns. For instance, a person suffering from diabetes might not want to reveal his or her unhealthy eating habit, which can be derived from the pattern 'rising blood sugar level' 'adding bread units'. Such a pattern which must not be discoverable by some parties (e. g., insurance companies) is called private pattern whereas a pattern which improves an app's service quality is labeled as public pattern. PATRON employs different techniques to conceal private patterns and, in case of available alternatives, selects the one with the least negative impact on service quality, such that the recognition of public patterns is supported as good as possible.
KW - access control
KW - complex event processing
KW - databases
KW - pattern concealing
KW - privacy
KW - stream processing
UR - http://www.scopus.com/inward/record.url?scp=85050539563&partnerID=8YFLogxK
U2 - 10.1109/PERCOMW.2018.8480227
DO - 10.1109/PERCOMW.2018.8480227
M3 - Conference contribution
AN - SCOPUS:85050539563
T3 - 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018
SP - 355
EP - 360
BT - 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018
Y2 - 19 March 2018 through 23 March 2018
ER -