Abstract
Nonlinear metasurfaces loaded with multi-quantum-well (MQW) heterostructures constitute a rapidly progressing class of optical devices that combine high nonlinear generation efficiency with an ultrathin profile. Here, we introduce and discuss terahertz (THz) difference-frequency generation (DFG) using MQW-based plasmonic metasurfaces and present a comprehensive theory for their rigorous electromagnetic analysis. We explicitly take into account complex phenomena associated with the local intensity saturation of intersubband transitions and identify fundamental upper-bounds for DFG conversion efficiency. Using this framework, we design and analyze a nonlinear DFG metasurface providing giant DFG nonlinear response and conversion efficiency up to 0.01% at 5.8 THz. Such metasurface can be used to generate 0.15 mW of THz power using pump intensities in the kW cm-2 range. We envision that such DFG metasurfaces can become a platform for uncooled, compact, and highly-efficient continuous-wave THz sources.
Original language | English |
---|---|
Article number | 104001 |
Journal | Journal of Optics (United Kingdom) |
Volume | 19 |
Issue number | 10 |
DOIs | |
State | Published - 29 Aug 2017 |
Externally published | Yes |
Keywords
- THz sources
- difference frequency generation
- metasurfaces
- nonlinear optics