Abstract
Dyneema composite is used in lightweight armour applications, because of its high specific material properties such as strength and stiffness. In armour applications, Dyneema composite is used to protect people or vehicles from projectile impact. In order to be able to guarantee a certain protection level, an accurate prediction of fracture phenomena that are caused by projectile impact is required. Currently, fracture phenomena such as delamination and fibre fracture are not accurately described. This is because a good understanding of fracture phenomena in Dyneema composite lacks. Therefore, both Dyneema fibre and Dyneema composite are analysed by different (impact) experiments to gain more insight in both the fracture phenomena as well as in the material properties. Parallel to these experiments, a start is made with the development of a new material model in ABAQUS\Explicit using cohesive zone techniques that is able to predict the fracture phenomena due to projectile impact.
Original language | English |
---|---|
Pages (from-to) | 120-125 |
Number of pages | 6 |
Journal | Key Engineering Materials |
Volume | 353-358 |
Issue number | PART 1 |
State | Published - 2007 |
Externally published | Yes |
Event | Asian Pacific Conference for Fracture and Strength (APCFS'06) - Sanya, Hainan Island, China Duration: 22 Nov 2006 → 25 Nov 2006 |