TY - GEN
T1 - High resolution single-mode-fiber-based sensor for intravascular detection of fluorescent molecular probes
AU - Razansky, R. Nika
AU - Mueller, Mathias S.
AU - Borisov, Alexander
AU - Koch, Alexander W.
AU - Jaffer, Farouc A.
AU - Ntziachristos, Vasilis
PY - 2010
Y1 - 2010
N2 - Early detection of coronary atherosclerosis is an unmet clinical challenge. The detection system has to be highly sensitive and possess high spacial resolution, in order to provide precise information of the vulnerable plaque location and size. Recently molecular fluorescence probes have been identified as efficient inflammation biomarkers for the inflammation process within vulnerable plaques1 and being used in the proposed application to detect inflamed lesions in the blood vessel wall. The general principle of the proposed solution is based on a sensor whose head is guided by an intravascular catheter to the region of interest (coronary artery). When the sensor illuminates an activated fluorescent probe, located in inflamed areas of vulnerable plaques, the fluorescence is excited and light is emitted with a slightly shifted spectrum. The emitted light is being collected by the same sensor head, guided through the optical fiber and finally detected by photo-detectors. In this way, by detecting emitted fluorescence one can obtain information about the location of vulnerable plaques. The localization resolution is critically depending on the spot size of the illuminating light beam. Moreover, for a high signal to noise ratio in the detection electronics, as much fluorescent light as possible has to be collected from the plaque location. It has been already demonstrated that using single-mode fibers in combination with graded index fibers, a Gaussian beam, with adjustable waist position and diameter can be formed, representing the fundamental limit of achievable spot size2. However, when using single mode fibers in this application, the collection efficiency would be very low due to the small core diameter of this fiber and thus signal to noise ratio would be strongly reduced. In this work, we present a solution to this challenge, combining both principles. A single mode fiber in combination with a graded index fiber is used for illumination purposes, while the fluorescence light is collected by the same fiber, but employing the cladding/coating total reflection to form a multimode fiber for the backwards propagating light. Thus, a narrow spot size can be obtained allowing high resolution images, with high signal to noise ratio due to the multimodal collection scheme. We show preliminary results of spot size and beam diameter measurements from the sensor head and discuss the implication for the improvement of the current catheter-based detection systems.
AB - Early detection of coronary atherosclerosis is an unmet clinical challenge. The detection system has to be highly sensitive and possess high spacial resolution, in order to provide precise information of the vulnerable plaque location and size. Recently molecular fluorescence probes have been identified as efficient inflammation biomarkers for the inflammation process within vulnerable plaques1 and being used in the proposed application to detect inflamed lesions in the blood vessel wall. The general principle of the proposed solution is based on a sensor whose head is guided by an intravascular catheter to the region of interest (coronary artery). When the sensor illuminates an activated fluorescent probe, located in inflamed areas of vulnerable plaques, the fluorescence is excited and light is emitted with a slightly shifted spectrum. The emitted light is being collected by the same sensor head, guided through the optical fiber and finally detected by photo-detectors. In this way, by detecting emitted fluorescence one can obtain information about the location of vulnerable plaques. The localization resolution is critically depending on the spot size of the illuminating light beam. Moreover, for a high signal to noise ratio in the detection electronics, as much fluorescent light as possible has to be collected from the plaque location. It has been already demonstrated that using single-mode fibers in combination with graded index fibers, a Gaussian beam, with adjustable waist position and diameter can be formed, representing the fundamental limit of achievable spot size2. However, when using single mode fibers in this application, the collection efficiency would be very low due to the small core diameter of this fiber and thus signal to noise ratio would be strongly reduced. In this work, we present a solution to this challenge, combining both principles. A single mode fiber in combination with a graded index fiber is used for illumination purposes, while the fluorescence light is collected by the same fiber, but employing the cladding/coating total reflection to form a multimode fiber for the backwards propagating light. Thus, a narrow spot size can be obtained allowing high resolution images, with high signal to noise ratio due to the multimodal collection scheme. We show preliminary results of spot size and beam diameter measurements from the sensor head and discuss the implication for the improvement of the current catheter-based detection systems.
KW - GRIN lens
KW - Intravascular imaging
KW - Molecular probe
KW - Near-infrared fluorescence detection
KW - Vulnerable plaque
UR - http://www.scopus.com/inward/record.url?scp=78751625337&partnerID=8YFLogxK
U2 - 10.1117/12.854038
DO - 10.1117/12.854038
M3 - Conference contribution
AN - SCOPUS:78751625337
SN - 9780819481887
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Biophotonics
T2 - Biophotonics: Photonic Solutions for Better Health Care II
Y2 - 12 April 2010 through 16 April 2010
ER -