TY - GEN
T1 - High-resolution raster scan optoacoustic mesoscopy of genetically modified drosophila pupae
AU - Omar, Murad
AU - Gateau, Jérôme
AU - Ntziachristos, Vasilis
PY - 2014
Y1 - 2014
N2 - Optoacoutic mesoscopy aims to bridge the gap between optoacoustic microscopy and optoacoustic tomography. We have developed a setup for optoacoustic mesoscopy where we use a high frequency, high numerical aperture spherically focused ultrasound transducer, with a wide bandwidth of 25-125 MHz. The excitation is performed using a diode laser capable of >500 μJ/pulse, 1.8ns pulse width, 1.4 kHz pulse repetition rate, at 515 nm. The system is capable to penetrate more than 5 mm with a resolution of 7 μm axially and 30 μm transversally. Using high-speed stages and scanning the transducer in a quasi-continuous mode, a field of view of 2×2 mm2 is scanned in less than 2 minutes. The system is suitable for imaging biological samples that have a diameter of 1-5 mm; zebrafish, drosophila melanogaster, and thin biological samples such as the mouse ear and mouse extremities. We have used our mesoscopic setup to generate 3- dimensional images of genetically modified drosophila fly, and drosophila pupae expressing GFP from the wings, high resolution images were generated in both cases, in the fly we can see the wings, the legs, the eyes, and the shape of the body. In the pupae the outline of the pupae, the spiracles at both ends and a strong signal corresponding to the location of the future wings are observed.
AB - Optoacoutic mesoscopy aims to bridge the gap between optoacoustic microscopy and optoacoustic tomography. We have developed a setup for optoacoustic mesoscopy where we use a high frequency, high numerical aperture spherically focused ultrasound transducer, with a wide bandwidth of 25-125 MHz. The excitation is performed using a diode laser capable of >500 μJ/pulse, 1.8ns pulse width, 1.4 kHz pulse repetition rate, at 515 nm. The system is capable to penetrate more than 5 mm with a resolution of 7 μm axially and 30 μm transversally. Using high-speed stages and scanning the transducer in a quasi-continuous mode, a field of view of 2×2 mm2 is scanned in less than 2 minutes. The system is suitable for imaging biological samples that have a diameter of 1-5 mm; zebrafish, drosophila melanogaster, and thin biological samples such as the mouse ear and mouse extremities. We have used our mesoscopic setup to generate 3- dimensional images of genetically modified drosophila fly, and drosophila pupae expressing GFP from the wings, high resolution images were generated in both cases, in the fly we can see the wings, the legs, the eyes, and the shape of the body. In the pupae the outline of the pupae, the spiracles at both ends and a strong signal corresponding to the location of the future wings are observed.
KW - Beam-forming
KW - Epi-illumination
KW - High frequency
KW - Mesoscopy
KW - Microscopy
KW - Optoacoustics
UR - http://www.scopus.com/inward/record.url?scp=84902097291&partnerID=8YFLogxK
U2 - 10.1117/12.2036185
DO - 10.1117/12.2036185
M3 - Conference contribution
AN - SCOPUS:84902097291
SN - 9780819498564
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Photons Plus Ultrasound
PB - SPIE
T2 - Photons Plus Ultrasound: Imaging and Sensing 2014
Y2 - 2 February 2014 through 5 February 2014
ER -