TY - JOUR
T1 - High opiate receptor binding potential in the human lateral pain system
AU - Baumgärtner, Ulf
AU - Buchholz, Hans Georg
AU - Bellosevich, Alexander
AU - Magerl, Walter
AU - Siessmeier, Thomas
AU - Rolke, Roman
AU - Höhnemann, Sabine
AU - Piel, Markus
AU - Rösch, Frank
AU - Wester, Hans Jürgen
AU - Henriksen, Gjermund
AU - Stoeter, Peter
AU - Bartenstein, Peter
AU - Treede, Rolf Detlef
AU - Schreckenberger, Mathias
N1 - Funding Information:
This study was supported by the Deutsche Forschungsgemeinschaft (Tr 236/13-3), DFNS (01EM0506) and Stiftung Rheinland-Pfalz. This paper contains essential parts of the doctoral thesis of A. Bellosevich to be submitted to the Medical Faculty of the Johannes Gutenberg-University Mainz, Germany.
PY - 2006/4/15
Y1 - 2006/4/15
N2 - To determine how opiate receptor distribution is co-localized with the distribution of nociceptive areas in the human brain, eleven male healthy volunteers underwent one PET scan with the subtype-nonselective opioidergic radioligand [18F]fluoroethyl-diprenorphine under resting conditions. The binding potential (BP), a parameter for the regional cerebral opioid receptor availability, was computed using the occipital cortex as reference region. The following regions of interest (ROIs) were defined on individual MR images: thalamus, sensory motor strip (SI/MI area), frontal operculum, parietal operculum, anterior insular cortex, posterior insular cortex, anterior cingulate cortex (ACC; peri- and subgenual part of "classical ACC" only), midcingulate cortex (MCC, posterior part of "classical ACC"), putamen, caudate nucleus and the amygdala. BP for [18F]fluoroethyl-diprenorphine was lowest in the sensory motor strip (0.30). Highest BP was found in thalamus (1.36), basal ganglia (putamen 1.22, caudate 1.16) and amygdala (1.21). In the cingulate cortex, ACC (1.11) had higher BP than MCC (0.86). In the operculo-insular region, we found high BPs in all ROIs: anterior insula (1.16), posterior insula (1.05), frontal operculum (0.99) and parietal operculum (0.77). Factor analysis of interindividual variability of opiate receptor BP revealed four factors (95% explained variance): (1) operculo-insular areas, ACC, MCC and putamen, (2) amygdala and thalamus, (3) caudate and thalamus, (4) SI/MI and MCC. Nociceptive areas of the lateral pain system (frontoparietal operculum and insula) have opiate receptor BPs significantly higher than SI/MI, comparable to anterior and midcingulate areas of the medial pain system. These findings suggest that the cortical anti-nociceptive effects of opiates are not only mediated by ACC and MCC, but also by the operculo-insular cortex, if it can be assumed that opioid binding mediates anti-nociception in those structures.
AB - To determine how opiate receptor distribution is co-localized with the distribution of nociceptive areas in the human brain, eleven male healthy volunteers underwent one PET scan with the subtype-nonselective opioidergic radioligand [18F]fluoroethyl-diprenorphine under resting conditions. The binding potential (BP), a parameter for the regional cerebral opioid receptor availability, was computed using the occipital cortex as reference region. The following regions of interest (ROIs) were defined on individual MR images: thalamus, sensory motor strip (SI/MI area), frontal operculum, parietal operculum, anterior insular cortex, posterior insular cortex, anterior cingulate cortex (ACC; peri- and subgenual part of "classical ACC" only), midcingulate cortex (MCC, posterior part of "classical ACC"), putamen, caudate nucleus and the amygdala. BP for [18F]fluoroethyl-diprenorphine was lowest in the sensory motor strip (0.30). Highest BP was found in thalamus (1.36), basal ganglia (putamen 1.22, caudate 1.16) and amygdala (1.21). In the cingulate cortex, ACC (1.11) had higher BP than MCC (0.86). In the operculo-insular region, we found high BPs in all ROIs: anterior insula (1.16), posterior insula (1.05), frontal operculum (0.99) and parietal operculum (0.77). Factor analysis of interindividual variability of opiate receptor BP revealed four factors (95% explained variance): (1) operculo-insular areas, ACC, MCC and putamen, (2) amygdala and thalamus, (3) caudate and thalamus, (4) SI/MI and MCC. Nociceptive areas of the lateral pain system (frontoparietal operculum and insula) have opiate receptor BPs significantly higher than SI/MI, comparable to anterior and midcingulate areas of the medial pain system. These findings suggest that the cortical anti-nociceptive effects of opiates are not only mediated by ACC and MCC, but also by the operculo-insular cortex, if it can be assumed that opioid binding mediates anti-nociception in those structures.
KW - Human
KW - Imaging
KW - Insula
KW - Operculum
KW - Opioid
KW - PET
UR - http://www.scopus.com/inward/record.url?scp=33645734601&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2005.10.033
DO - 10.1016/j.neuroimage.2005.10.033
M3 - Article
C2 - 16337817
AN - SCOPUS:33645734601
SN - 1053-8119
VL - 30
SP - 692
EP - 699
JO - NeuroImage
JF - NeuroImage
IS - 3
ER -