TY - JOUR
T1 - High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response
AU - Li, Yongle
AU - Haseneyer, Grit
AU - Schön, Chris Carolin
AU - Ankerst, Donna
AU - Korzun, Viktor
AU - Wilde, Peer
AU - Bauer, Eva
N1 - Funding Information:
We would like to thank Susanne Schrack and Tobias Dreser for technical assistance and Carmen Berlanas for sequencing ScCbf6 in her master thesis. We acknowledge Andreas Böck and Valentin Wimmer for their help in determining the LD extent. We thank the two anonymous reviewers for their constructive comments. The first author gratefully acknowledges the support of the Graduate School at the Technische Universität München, München, Germany. The project GABI RYE-FROST is funded by the German Federal Ministry of Education and Research (Grant numbers 0315062A and 0315062B).
PY - 2011/1/10
Y1 - 2011/1/10
N2 - Rye (Secale cereale L.) is the most frost tolerant cereal species. As an outcrossing species, rye exhibits high levels of intraspecific diversity, which makes it well-suited for allele mining in genes involved in the frost responsive network. For investigating genetic diversity and the extent of linkage disequilibrium (LD) we analyzed eleven candidate genes and 37 microsatellite markers in 201 lines from five Eastern and Middle European rye populations.Results: A total of 147 single nucleotide polymorphisms (SNPs) and nine insertion-deletion polymorphisms were found within 7,639 bp of DNA sequence from eleven candidate genes, resulting in an average SNP frequency of 1 SNP/52 bp. Nucleotide and haplotype diversity of candidate genes were high with average values π = 5.6 × 10-3 and Hd = 0.59, respectively. According to an analysis of molecular variance (AMOVA), most of the genetic variation was found between individuals within populations. Haplotype frequencies varied markedly between the candidate genes. ScCbf14, ScVrn1, and ScDhn1 were dominated by a single haplotype, while the other 8 genes (ScCbf2, ScCbf6, ScCbf9b, ScCbf11, ScCbf12, ScCbf15, ScIce2, and ScDhn3) had a more balanced haplotype frequency distribution. Intra-genic LD decayed rapidly, within approximately 520 bp on average. Genome-wide LD based on microsatellites was low.Conclusions: The Middle European population did not differ substantially from the four Eastern European populations in terms of haplotype frequencies or in the level of nucleotide diversity. The low LD in rye compared to self-pollinating species promises a high resolution in genome-wide association mapping. SNPs discovered in the promoters or coding regions, which attribute to non-synonymous substitutions, are suitable candidates for association mapping.
AB - Rye (Secale cereale L.) is the most frost tolerant cereal species. As an outcrossing species, rye exhibits high levels of intraspecific diversity, which makes it well-suited for allele mining in genes involved in the frost responsive network. For investigating genetic diversity and the extent of linkage disequilibrium (LD) we analyzed eleven candidate genes and 37 microsatellite markers in 201 lines from five Eastern and Middle European rye populations.Results: A total of 147 single nucleotide polymorphisms (SNPs) and nine insertion-deletion polymorphisms were found within 7,639 bp of DNA sequence from eleven candidate genes, resulting in an average SNP frequency of 1 SNP/52 bp. Nucleotide and haplotype diversity of candidate genes were high with average values π = 5.6 × 10-3 and Hd = 0.59, respectively. According to an analysis of molecular variance (AMOVA), most of the genetic variation was found between individuals within populations. Haplotype frequencies varied markedly between the candidate genes. ScCbf14, ScVrn1, and ScDhn1 were dominated by a single haplotype, while the other 8 genes (ScCbf2, ScCbf6, ScCbf9b, ScCbf11, ScCbf12, ScCbf15, ScIce2, and ScDhn3) had a more balanced haplotype frequency distribution. Intra-genic LD decayed rapidly, within approximately 520 bp on average. Genome-wide LD based on microsatellites was low.Conclusions: The Middle European population did not differ substantially from the four Eastern European populations in terms of haplotype frequencies or in the level of nucleotide diversity. The low LD in rye compared to self-pollinating species promises a high resolution in genome-wide association mapping. SNPs discovered in the promoters or coding regions, which attribute to non-synonymous substitutions, are suitable candidates for association mapping.
UR - http://www.scopus.com/inward/record.url?scp=78650979491&partnerID=8YFLogxK
U2 - 10.1186/1471-2229-11-6
DO - 10.1186/1471-2229-11-6
M3 - Article
C2 - 21219606
AN - SCOPUS:78650979491
SN - 1471-2229
VL - 11
JO - BMC Plant Biology
JF - BMC Plant Biology
M1 - 6
ER -