High-Fidelity SLAM Using Gaussian Splatting with Rendering-Guided Densification and Regularized Optimization

Shuo Sun, Malcolm Mielle, Achim J. Lilienthal, Martin Magnusson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We propose a dense RGBD SLAM system based on 3D Gaussian Splatting that provides metrically accurate pose tracking and visually realistic reconstruction. To this end, we first propose a Gaussian densification strategy based on the rendering loss to map unobserved areas and refine reobserved areas. Second, we introduce extra regularization parameters to alleviate the "forgetting"problem during contiunous mapping, where parameters tend to overfit the latest frame and result in decreasing rendering quality for previous frames. Both mapping and tracking are performed with Gaussian parameters by minimizing re-rendering loss in a differentiable way. Compared to recent neural and concurrently developed Gaussian splatting RGBD SLAM baselines, our method achieves state-of-the-art results on the synthetic dataset Replica and competitive results on the real-world dataset TUM. The code is released on https://github.com/ljjTYJR/HF-SLAM.

Original languageEnglish
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10476-10482
Number of pages7
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: 14 Oct 202418 Oct 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period14/10/2418/10/24

Fingerprint

Dive into the research topics of 'High-Fidelity SLAM Using Gaussian Splatting with Rendering-Guided Densification and Regularized Optimization'. Together they form a unique fingerprint.

Cite this