TY - JOUR
T1 - High-dimensional Bayesian likelihood normalisation for CRESST's background model
AU - The CRESST Collaboration
AU - Angloher, G.
AU - Banik, S.
AU - Benato, G.
AU - Bento, A.
AU - Bertolini, A.
AU - Breier, R.
AU - Bucci, C.
AU - Burkhart, J.
AU - Canonica, L.
AU - D'Addabbo, A.
AU - Di Lorenzo, S.
AU - Einfalt, L.
AU - Erb, A.
AU - Feilitzsch, F. V.
AU - Fichtinger, S.
AU - Fuchs, D.
AU - Garai, A.
AU - Ghete, V. M.
AU - Gorla, P.
AU - Guillaumon, P. V.
AU - Gupta, S.
AU - Hauff, D.
AU - Ješkovský, M.
AU - Jochum, J.
AU - Kaznacheeva, M.
AU - Kinast, A.
AU - Kluck, H.
AU - Kraus, H.
AU - Kuckuk, S.
AU - Langenkämper, A.
AU - Mancuso, M.
AU - Marini, L.
AU - Meyer, L.
AU - Mokina, V.
AU - Nilima, A.
AU - Olmi, M.
AU - Ortmann, T.
AU - Pagliarone, C.
AU - Pattavina, L.
AU - Petricca, F.
AU - Potzel, W.
AU - Povinec, P.
AU - Pröbst, F.
AU - Pucci, F.
AU - Reindl, F.
AU - Rothe, J.
AU - Schäffner, K.
AU - Schieck, J.
AU - Schmiedmayer, D.
AU - Schönert, S.
N1 - Publisher Copyright:
© 2024 IOP Publishing Ltd and Sissa Medialab. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - Using CaWO4 crystals as cryogenic calorimeters, the CRESST experiment searches for nuclear recoils caused by the scattering of potential Dark Matter particles. A reliable identification of a potential signal crucially depends on an accurate background model. In this work, we introduce an improved normalisation method for CRESST's model of electromagnetic backgrounds, which is an important technical step towards developing a more accurate background model. Spectral templates based on Geant4 simulations are normalised via a Bayesian likelihood fit to experimental background data. Contrary to our previous work, no explicit assumption of partial secular equilibrium is required a priori, which results in a more robust and versatile applicability. This new method also naturally considers the correlation between all background components. Due to these purely technical improvements, the presented method has the potential to explain up to 82.7 % of the experimental background within [1 keV,40 keV], an improvement of at most 18.6 % compared to our previous method. The actual value is subject to ongoing validations of the included physics.
AB - Using CaWO4 crystals as cryogenic calorimeters, the CRESST experiment searches for nuclear recoils caused by the scattering of potential Dark Matter particles. A reliable identification of a potential signal crucially depends on an accurate background model. In this work, we introduce an improved normalisation method for CRESST's model of electromagnetic backgrounds, which is an important technical step towards developing a more accurate background model. Spectral templates based on Geant4 simulations are normalised via a Bayesian likelihood fit to experimental background data. Contrary to our previous work, no explicit assumption of partial secular equilibrium is required a priori, which results in a more robust and versatile applicability. This new method also naturally considers the correlation between all background components. Due to these purely technical improvements, the presented method has the potential to explain up to 82.7 % of the experimental background within [1 keV,40 keV], an improvement of at most 18.6 % compared to our previous method. The actual value is subject to ongoing validations of the included physics.
KW - Analysis and statistical methods
KW - Data processing methods
KW - Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
KW - Simulation methods and programs
UR - http://www.scopus.com/inward/record.url?scp=85209374286&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/19/11/P11013
DO - 10.1088/1748-0221/19/11/P11013
M3 - Article
AN - SCOPUS:85209374286
SN - 1748-0221
VL - 19
JO - Journal of Instrumentation
JF - Journal of Instrumentation
IS - 11
M1 - P11013
ER -