Hierarchical attention-based temporal convolutional networks for EEG-based emotion recognition

Chao Li, Boyang Chen, Ziping Zhao, Nicholas Cummins, Björn W. Schuller

Research output: Contribution to journalConference articlepeer-review

22 Scopus citations

Abstract

EEG-based emotion recognition is an effective way to infer the inner emotional state of human beings. Recently, deep learning methods, particularly long short-term memory recurrent neural networks (LSTM-RNNs), have made encouraging progress for in the field of emotion recognition. However, the LSTM-RNNs are time-consuming and have difficulty avoiding the problem of exploding/vanishing gradients when during training. In addition, EEG-based emotion recognition often suffers due to the existence of silent and emotional irrelevant frames from intra-channel. Not all channels carry the same emotional discriminative information. In order to tackle these problems, a hierarchical attention-based temporal convolutional networks (HATCN) for efficient EEG-based emotion recognition is proposed. Firstly, a spectrogram representation is generated from raw EEG signals in each channel to capture their time and frequency information. Secondly, temporal convolutional networks (TCNs) are utilised to automatically learn more robust/intrinsic long-term dynamic characters in emotion response. Next, a hierarchical attention mechanism is investigated that aggregates the emotional information at both the frame and channel level. The experimental results on the DEAP dataset show that our method achieves an average recognition accuracy of 0.716 and an F1-score of 0.642 over four emotional dimensions and outperforms other state-of-the-art methods in a user-independent scenario.

Original languageEnglish
Pages (from-to)1240-1244
Number of pages5
JournalICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2021-June
DOIs
StatePublished - 2021
Externally publishedYes
Event2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada
Duration: 6 Jun 202111 Jun 2021

Keywords

  • EEG signals
  • Emotion recognition
  • Hierarchical attention mechanism
  • Temporal convolutional networks

Fingerprint

Dive into the research topics of 'Hierarchical attention-based temporal convolutional networks for EEG-based emotion recognition'. Together they form a unique fingerprint.

Cite this