Hexagons are the Bestagons: Design Automation for Silicon Dangling Bond Logic

Marcel Walter, Samuel Sze Hang Ng, Konrad Walus, Robert Wille

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

23 Scopus citations

Abstract

Field-coupled Nanocomputing (FCN) defines a class of post-CMOS nanotechnologies that promises compact layouts, low power operation, and high clock rates. Recent breakthroughs in the fabrication of Silicon Dangling Bonds (SiDBs) acting as quantum dots enabled the demonstration of a sub-30 nm2 OR gate and wire segments. This motivated the research community to invest manual labor in the design of additional gates and whole circuits which, however, is currently severely limited by scalability issues. In this work, these limitations are overcome by the introduction of a design automation framework that establishes a flexible topology based on hexagons as well as a corresponding Bestagon gate library for this technology and, additionally, provides automatic methods for physical design. By this, the first design automation solution for the promising SiDB platform is proposed. In an effort to support open research and open data, the resulting framework and all design files will be made available.

Original languageEnglish
Title of host publicationProceedings of the 59th ACM/IEEE Design Automation Conference, DAC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages739-744
Number of pages6
ISBN (Electronic)9781450391429
DOIs
StatePublished - 10 Jul 2022
Event59th ACM/IEEE Design Automation Conference, DAC 2022 - San Francisco, United States
Duration: 10 Jul 202214 Jul 2022

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Conference

Conference59th ACM/IEEE Design Automation Conference, DAC 2022
Country/TerritoryUnited States
CitySan Francisco
Period10/07/2214/07/22

Fingerprint

Dive into the research topics of 'Hexagons are the Bestagons: Design Automation for Silicon Dangling Bond Logic'. Together they form a unique fingerprint.

Cite this