Hamiltonian Dynamics for Real-World Shape Interpolation

Marvin Eisenberger, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

We revisit the classical problem of 3D shape interpolation and propose a novel, physically plausible approach based on Hamiltonian dynamics. While most prior work focuses on synthetic input shapes, our formulation is designed to be applicable to real-world scans with imperfect input correspondences and various types of noise. To that end, we use recent progress on dynamic thin shell simulation and divergence-free shape deformation and combine them to address the inverse problem of finding a plausible intermediate sequence for two input shapes. In comparison to prior work that mainly focuses on small distortion of consecutive frames, we explicitly model volume preservation and momentum conservation, as well as an anisotropic local distortion model. We argue that, in order to get a robust interpolation for imperfect inputs, we need to model the input noise explicitly which results in an alignment based formulation. Finally, we show a qualitative and quantitative improvement over prior work on a broad range of synthetic and scanned data. Besides being more robust to noisy inputs, our method yields exactly volume preserving intermediate shapes, avoids self-intersections and is scalable to high resolution scans.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages179-196
Number of pages18
ISBN (Print)9783030585471
DOIs
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12349 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period23/08/2028/08/20

Keywords

  • 3D computer vision
  • Registration
  • Shape interpolation

Fingerprint

Dive into the research topics of 'Hamiltonian Dynamics for Real-World Shape Interpolation'. Together they form a unique fingerprint.

Cite this