TY - GEN
T1 - Hamiltonian Dynamics for Real-World Shape Interpolation
AU - Eisenberger, Marvin
AU - Cremers, Daniel
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - We revisit the classical problem of 3D shape interpolation and propose a novel, physically plausible approach based on Hamiltonian dynamics. While most prior work focuses on synthetic input shapes, our formulation is designed to be applicable to real-world scans with imperfect input correspondences and various types of noise. To that end, we use recent progress on dynamic thin shell simulation and divergence-free shape deformation and combine them to address the inverse problem of finding a plausible intermediate sequence for two input shapes. In comparison to prior work that mainly focuses on small distortion of consecutive frames, we explicitly model volume preservation and momentum conservation, as well as an anisotropic local distortion model. We argue that, in order to get a robust interpolation for imperfect inputs, we need to model the input noise explicitly which results in an alignment based formulation. Finally, we show a qualitative and quantitative improvement over prior work on a broad range of synthetic and scanned data. Besides being more robust to noisy inputs, our method yields exactly volume preserving intermediate shapes, avoids self-intersections and is scalable to high resolution scans.
AB - We revisit the classical problem of 3D shape interpolation and propose a novel, physically plausible approach based on Hamiltonian dynamics. While most prior work focuses on synthetic input shapes, our formulation is designed to be applicable to real-world scans with imperfect input correspondences and various types of noise. To that end, we use recent progress on dynamic thin shell simulation and divergence-free shape deformation and combine them to address the inverse problem of finding a plausible intermediate sequence for two input shapes. In comparison to prior work that mainly focuses on small distortion of consecutive frames, we explicitly model volume preservation and momentum conservation, as well as an anisotropic local distortion model. We argue that, in order to get a robust interpolation for imperfect inputs, we need to model the input noise explicitly which results in an alignment based formulation. Finally, we show a qualitative and quantitative improvement over prior work on a broad range of synthetic and scanned data. Besides being more robust to noisy inputs, our method yields exactly volume preserving intermediate shapes, avoids self-intersections and is scalable to high resolution scans.
KW - 3D computer vision
KW - Registration
KW - Shape interpolation
UR - http://www.scopus.com/inward/record.url?scp=85097443224&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-58548-8_11
DO - 10.1007/978-3-030-58548-8_11
M3 - Conference contribution
AN - SCOPUS:85097443224
SN - 9783030585471
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 179
EP - 196
BT - Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
A2 - Vedaldi, Andrea
A2 - Bischof, Horst
A2 - Brox, Thomas
A2 - Frahm, Jan-Michael
PB - Springer Science and Business Media Deutschland GmbH
T2 - 16th European Conference on Computer Vision, ECCV 2020
Y2 - 23 August 2020 through 28 August 2020
ER -