TY - GEN
T1 - Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics
AU - Prantl, Lukas
AU - Ummenhofer, Benjamin
AU - Koltun, Vladlen
AU - Thuerey, Nils
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - We present a novel method for guaranteeing linear momentum in learned physics simulations. Unlike existing methods, we enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers. We combine these strict constraints with a hierarchical network architecture, a carefully constructed resampling scheme, and a training approach for temporal coherence. In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially. In addition, the induced physical bias leads to significantly better generalization performance and makes our method more reliable in unseen test cases. We evaluate our method on a range of different, challenging fluid scenarios. Among others, we demonstrate that our approach generalizes to new scenarios with up to one million particles. Our results show that the proposed algorithm can learn complex dynamics while outperforming existing approaches in generalization and training performance. An implementation of our approach is available at https://github.com/tum-pbs/DMCF.
AB - We present a novel method for guaranteeing linear momentum in learned physics simulations. Unlike existing methods, we enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers. We combine these strict constraints with a hierarchical network architecture, a carefully constructed resampling scheme, and a training approach for temporal coherence. In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially. In addition, the induced physical bias leads to significantly better generalization performance and makes our method more reliable in unseen test cases. We evaluate our method on a range of different, challenging fluid scenarios. Among others, we demonstrate that our approach generalizes to new scenarios with up to one million particles. Our results show that the proposed algorithm can learn complex dynamics while outperforming existing approaches in generalization and training performance. An implementation of our approach is available at https://github.com/tum-pbs/DMCF.
UR - http://www.scopus.com/inward/record.url?scp=85161136681&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85161136681
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -