TY - JOUR
T1 - Growth response of Norway spruce saplings in two forest gaps in the Swiss Alps to artificial browsing, infection with black snow mold, and competition by ground vegetation
AU - Cunningham, Catherine
AU - Zimmermann, Niklaus E.
AU - Stoeckli, Veronika
AU - Bugmann, Harald
PY - 2006/11
Y1 - 2006/11
N2 - Black snow mold (Herpotrichia juniperi (Duby) Petr.) infection and browsing byungulates influence the growth of Norway spruce (Picea abies (L.) Karst.) saplings in subalpine forests in the European Alps. To isolate the impacts of artificial browsing (clipping of shoots) and snow mold infection on growth, we conducted a 2 year field experiment with planted saplings in two forest gaps in the subalpine zone of the Swiss Alps. In the first year (2003) saplings responded slightly positively to clipping and negatively to snow mold infection; sapling growth behavior was site-specific (ANOVA, r2 = 0.35). In 2004, saplings responded negatively to clipping, snow mold infection, long-lasting snow cover, and shading by ground vegetation (ANOVA, r2 = 0.59). The difference in mean annual growth rates between noninfected and infected saplings was large; long-lasting snow was found to enhance snow mold coverage. Removing these variables from general linear models strongly reduced model performance (d2 = 0.32 for the full model, d2 = 0.23 for no clipping, d2 = 0.16 for no snow cover). Sapling growth was negatively related to shading by ground vegetation, especially in 2004. We conclude that these biotic factors have a strong impact on growth, both individually and in combination, and that their effect is enhanced by interaction with environmental factors such as snow duration.
AB - Black snow mold (Herpotrichia juniperi (Duby) Petr.) infection and browsing byungulates influence the growth of Norway spruce (Picea abies (L.) Karst.) saplings in subalpine forests in the European Alps. To isolate the impacts of artificial browsing (clipping of shoots) and snow mold infection on growth, we conducted a 2 year field experiment with planted saplings in two forest gaps in the subalpine zone of the Swiss Alps. In the first year (2003) saplings responded slightly positively to clipping and negatively to snow mold infection; sapling growth behavior was site-specific (ANOVA, r2 = 0.35). In 2004, saplings responded negatively to clipping, snow mold infection, long-lasting snow cover, and shading by ground vegetation (ANOVA, r2 = 0.59). The difference in mean annual growth rates between noninfected and infected saplings was large; long-lasting snow was found to enhance snow mold coverage. Removing these variables from general linear models strongly reduced model performance (d2 = 0.32 for the full model, d2 = 0.23 for no clipping, d2 = 0.16 for no snow cover). Sapling growth was negatively related to shading by ground vegetation, especially in 2004. We conclude that these biotic factors have a strong impact on growth, both individually and in combination, and that their effect is enhanced by interaction with environmental factors such as snow duration.
UR - http://www.scopus.com/inward/record.url?scp=34247239358&partnerID=8YFLogxK
U2 - 10.1139/X06-156
DO - 10.1139/X06-156
M3 - Article
AN - SCOPUS:34247239358
SN - 0045-5067
VL - 36
SP - 2782
EP - 2793
JO - Canadian Journal of Forest Research
JF - Canadian Journal of Forest Research
IS - 11
ER -